终身会员
搜索
    上传资料 赚现金

    2022年最新强化训练沪教版七年级数学第二学期第十五章平面直角坐标系定向练习试题(含详解)

    立即下载
    加入资料篮
    2022年最新强化训练沪教版七年级数学第二学期第十五章平面直角坐标系定向练习试题(含详解)第1页
    2022年最新强化训练沪教版七年级数学第二学期第十五章平面直角坐标系定向练习试题(含详解)第2页
    2022年最新强化训练沪教版七年级数学第二学期第十五章平面直角坐标系定向练习试题(含详解)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第十五章 平面直角坐标系综合与测试达标测试

    展开

    这是一份初中第十五章 平面直角坐标系综合与测试达标测试,共30页。试卷主要包含了点在第四象限,则点在第几象限等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系定向练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    2、点M(3,2)关于y轴的对称点的坐标为( )
    A.(﹣3,2) B.(3,﹣2) C.(﹣3,﹣2) D.(1,2)
    3、在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )
    A.m=3,n=2 B.m=,n=2 C.m=2,n=3 D.m=,n=
    4、如图,的顶点坐标为,,,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是( ).

    A. B. C. D.
    5、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )
    A. B. C. D.
    6、若点在第一象限,则a的取值范围是( )
    A. B. C. D.无解
    7、点在第四象限,则点在第几象限(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    8、已知点M(2,﹣3),点N与点M关于x轴对称,则点N的坐标是(  )
    A.(﹣2,3) B.(﹣2,﹣3) C.(3,2) D.(2,3)
    9、在平面直角坐标系中,点,关于轴对称点的坐标是( )
    A. B. C. D.
    10、在平面直角坐标系中,点A的坐标为.作点A关于x轴的对称点,得到点,再将点向左平移2个单位长度,得到点,则点所在的象限是( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2021的坐标为_____.

    2、若点关于原点的对称点是,则______.
    3、如图,有一个英文单词,它的各个字母的位置依次是,,,,,所对应的字母,如对应的字母是,则这个英文单词为_____.

    4、正方形ABCD在坐标系中的位置如图所示.A(0,3),B(2,4),C(3,2),D(1,10).将正方形ABCD绕D点旋转90°后,点B到达的位置坐标为_____.

    5、在平面直角坐标系中,点与点B关于y轴对称,则点B的坐标是________.
    三、解答题(10小题,每小题5分,共计50分)
    1、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).

    (1)如图1,在BC上找一点P,使∠BAP=45°;
    (2)如图2,作△ABC的高BH.
    2、如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,1),B(0,1),C(0,4).
    (1)画出△ABC关于x轴对称的△A1B1C1,A、B、C的对应点分别为A1,B1,C1;
    (2)画出△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2,A、B、C的对应点分别为A2,B2,C2.连接B2C2,并直接写出线段B2C2的长度.

    3、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线l:x=1的二次反射点为(-1,-2).
    已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).

    (1)点A的一次反射点为 ,点A关于直线:x=2的二次反射点为 ;
    (2)点B是点A关于直线:x=a的二次反射点,则a的值为 ;
    (3)设点A,B,C关于直线:x=t的二次反射点分别为,,,若△与△BCD无公共点,求t的取值范围.
    4、在如图所示的平面直角坐标系中,A点坐标为.

    (1)画出关于y轴对称的;
    (2)求的面积.
    5、如图,在平面直角坐标中,、、.

    (1)在图中作出关于轴的对称图形;
    (2)直接写出点、、的坐标:________,________,________.
    (3)求的面积.
    6、如图所示的方格纸中每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系.
    (1)请写出△ABC各点的坐标A    B    C    ;
    (2)若把△ABC向上平移2个单位,再向右平移2个单位得,在图中画出,
    (3)求△ABC 的面积

    7、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0, -1),

    (1)写出A、B两点的坐标;
    (2)画出△ABC关于y轴对称的△A1B1C1 ;
    (3)画出△ABC绕点C旋转180°后得到的△A2B2C2.
    8、如图,平面直角坐标系中,的顶点都在格点上,已知点的坐标是.

    (1)点的坐标是______;
    (2)画出关于轴对称的,其中点、、的对应点分别为点、、;
    (3)直接写出的面积为______.
    9、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′.
    (1)根据要求在网格中画出相应图形;
    (2)写出△A′B′C′三个顶点的坐标.

    10、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点的坐标分别是,,.
    (1)求的面积;
    (2)在图中作出关于轴的对称图形;
    (3)写出点,的坐标.


    -参考答案-
    一、单选题
    1、B
    【分析】
    设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.
    【详解】
    解:∵设内任一点A(a,b)在第三象限内,
    ∴a<0,b<0,
    ∵点A关于x轴对称后的点B(a,-b),
    ∴﹣b>0,
    ∴点B(a,-b)所在的象限是第二象限,即在第二象限.
    故选:B.
    【点睛】
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.
    2、A
    【分析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
    【详解】
    解:点(3,2)关于y轴的对称点的坐标是(-3,2).
    故选:A.
    【点睛】
    本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
    (1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
    (2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.
    3、B
    【分析】
    由题意直接根据关于y轴对称点的性质求出m和n的值,从而得解.
    【详解】
    解:∵点A(m,2)与点B(3,n)关于y轴对称,纵坐标相同,横坐标互为相反数.
    ∴m=-3,n=2.
    故答案为:B.
    【点睛】
    本题主要考查关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题的关键.
    4、A
    【分析】
    画出旋转平移后的图形即可解决问题.
    【详解】
    解:旋转,平移后的图形如图所示,,

    故选:A
    【点睛】
    本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.
    5、C
    【分析】
    根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解.
    【详解】
    解:点的坐标是,点与点关于轴对称,
    的坐标为,
    故选:C.
    【点睛】
    本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键.
    6、B
    【分析】
    由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.
    【详解】
    解: 点在第一象限,

    由①得:
    由②得:

    故选B
    【点睛】
    本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.
    7、C
    【分析】
    根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.
    【详解】
    ∵点A(x,y)在第四象限,
    ∴x>0,y<0,
    ∴﹣x<0,y﹣2<0,
    故点B(﹣x,y﹣2)在第三象限.
    故选:C.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    8、D
    【分析】
    根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.
    【详解】
    ∵点M(2,﹣3),点N与点M关于x轴对称,
    ∴点N的坐标是(2,3),
    故选:D.
    【点睛】
    本题考查了坐标轴中轴对称变化,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    9、A
    【分析】
    平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.
    【详解】
    解:点A(3,-4)关于x轴的对称点的坐标是(3,4),
    故选:A.
    【点睛】
    本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.
    10、C
    【分析】
    根据题意结合轴对称的性质可求出点的坐标.再根据平移的性质可求出点的坐标,即可知其所在象限.
    【详解】
    ∵点A的坐标为(1,3),点是点A关于x轴的对称点,
    ∴点的坐标为(1,-3).
    ∵点是将点向左平移2个单位长度得到的点,
    ∴点的坐标为(-1,-3),
    ∴点所在的象限是第三象限.
    故选C.
    【点睛】
    本题考查轴对称的性质,平移中点的坐标的变化以及判断点所在的象限.根据题意求出点的坐标是解答本题的关键.
    二、填空题
    1、(-2,0)
    【分析】
    根据中心对称的性质找出部分Pn的坐标,根据坐标的变化找出变化规律“P6n(0,0),P6n+1(2,0),P6n+2(−2,2),P6n+3(0,−2),P6n+4(2,2),P6n+5(−2,0)(n为自然数)”,依此规律即可得出结论.
    【详解】
    解:观察,发现规律:
    P0(0,0),P1(2,0),P2(−2,2),P3(0,−2),P4(2,2),P5(−2,0),P6(0,0),P7(2,0),…,
    ∴P6n(0,0),P6n+1(2,0),P6n+2(−2,2),P6n+3(0,−2),P6n+4(2,2),P6n+5(−2,0)(n为自然数).
    ∵2021=6×336+5,
    ∴P2020(-2,0).
    故答案为:(-2,0).
    【点睛】
    本题考查了规律型中的点的坐标以及中心对称的性质,解题的关键是找出变化规律“P6n(0,0),P6n+1(2,0),P6n+2(−2,2),P6n+3(0,−2),P6n+4(2,2),P6n+5(−2,0)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据题意列出部分Pn点的坐标,根据坐标的变化找出变化规律是关键.
    2、
    【分析】
    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
    【详解】
    解:由关于坐标原点的对称点为,得,

    解得:
    故答案为:.
    【点睛】
    本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    3、
    【分析】
    根据题目所给坐标,得出相应位置的字母,即可得出代表的英文单词.
    【详解】
    解:对应的字母为,
    对应的字母为,
    对应的字母为,
    对应的字母为,
    对应的字母为,
    对应的字母为,
    这个英文单词为:,
    故答案为:.
    【点睛】
    本题考查了平面直角坐标系,能准确根据所给的坐标得出点的位置是解本题的关键.
    4、 (4,0)或(﹣2,2)
    【分析】
    利用网格结构找出点B绕点D旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.
    【详解】
    解:如图,点B绕点D旋转90°到达点B′或B″,

    点B′的坐标为(4,0),B″(﹣2,2).
    故答案为:(4,0)或(﹣2,2).
    【点睛】
    本题主要考查了坐标与图形变化—旋转,解题的关键在于能够利用数形结合的思想进行求解.
    5、(-2,4)
    【分析】
    根据点(x,y)关于y轴对称的点的坐标为(-x, y)进行解答即可.
    【详解】
    解:点A(2,4)关于y轴对称的点B的坐标是(-2,4),
    故答案为:(-2,4).
    【点睛】
    本题考查关于y轴对称的点的坐标,熟知关于y轴对称的点的坐标变换规律是解答的关键.
    三、解答题
    1、(1)见解析;(2)见解析
    【分析】
    (1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;
    (2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.
    【详解】
    解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求,

    理由如下:
    根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,
    ∴△ABM≌△BNQ,
    ∴AB=BN,∠ABM=∠BNQ,
    ∴∠BAP=∠BNP,
    ∵∠NBQ+∠BNQ=90°,
    ∴∠ABM +∠BNQ=90°,
    ∴∠ABN=90°,
    ∴∠BAP=∠BNP=45°;
    (2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.

    理由如下:
    过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,
    ∴△ACD≌△QBG,
    ∴∠ACD=∠QBG,
    ∵∠QBG+∠BQG=90°,
    ∴∠ACD +∠BQG=90°,
    ∴∠CHQ=90°,
    ∴BH⊥AC,即BH为△ABC的高.
    【点睛】
    本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
    2、(1)作图见解析;(2)作图见解析,
    【分析】
    (1)关于轴对称,即对应点横坐标不变,纵坐标互为相反数,找出坐标即可;
    (2)根据旋转的性质可画出图形,即可找出的坐标,由即可得出答案.
    【详解】
    (1)

    关于轴对称的如图所作,
    ,,,
    ,,;
    (2)绕原点逆时针方向旋转得到的如图所示,
    由旋转的性质得:.
    【点睛】
    本题考查轴对称与旋转作图,掌握轴对称的性质以及旋转的性质是解题的关键.
    3、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.
    【分析】
    (1)根据一次反射点和二次反射点的定义求解即可;
    (2)根据二次反射点的意义求解即可;
    (3)根据题意得,,,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.
    【详解】
    解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),
    点A关于直线:x=2的二次反射点为(5,1)
    故答案为: (-1,1);(5,1).
    (2)∵A(-1,-1),B(-3,1),且点B是点A关于直线:x=a的二次反射点,

    解得,
    故答案为: -2.
    (3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.
    当<0时,只需关于直线=的对称点在点B左侧即可,如图1.
    ∵当与点B重合时,=-2,
    ∴当<-2时,△与△BCD无公共点.
    当>0时,只需点D关于直线x=的二次反射点在点D右侧即可,如图2,
    ∵当与点D重合时,=1,
    ∴当>1时,△与△BCD无公共点.
    综上,若△与△BCD无公共点,的取值范围是<-2,或>1.

    【点睛】
    本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
    4、(1)见解析;(2).
    【分析】
    (1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,顺次连接A1、B1、C1即可得答案;
    (2)用△ABC所在矩形面积减去三个小三角形面积即可得答案.
    【详解】
    (1)分别作A、B、C三点关于y轴的对称点A1、B1、C1,△A1B1C1即为所求;

    (2)S△ABC=3×3=.
    【点睛】
    本题考查了作轴对称图形和运用拼凑法求不规则三角形的面积,其中掌握拼凑法求不规则图形的面积是解答本题的关键.
    5、(1)见解析;(2),,;(3)
    【分析】
    (1)根据轴对称图形的特点画出图形即可;
    (2)根据所画出的图形写出点的坐标;
    (3)首先把三角形放在一个大正方形内,再用大正方形的面积减去四周三角形的面积即可.
    【详解】
    解:(1)如图所示:

    (2)根据平面直角坐标系可得:,,;
    故答案为:,,
    (3)△ABC的面积=3×5-×3×3-×2×1-×5×2=.
    【点睛】
    本题主要考查了轴对称图形,以及点的坐标,三角形的面积,关键是掌握在计算不规则图形的面积时,可以利用可以用补图的方法.
    6、(1);(2)见解析;(3)7
    【分析】
    (1)根据平面直角坐标系直接写出点的坐标即可;
    (2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求
    (3)根据长方形减去三个三角形的面积即可求得△ABC 的面积
    【详解】
    (1)根据平面直角坐标系可得
    故答案为:
    (2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求

    (3)的面积等于


    【点睛】
    本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键.
    7、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析
    【分析】
    (1)根据 A,B 的位置写出坐标即可;
    (2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;
    (3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可.
    【详解】
    (1)由题意 A(-1,2),B(-3,1).
    (2)△ABC关于y轴对称的△A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,
    ∵A(-1,2),B(-3,1).C(0,-1),
    ∴A1(1,2),B1(3,1),C1(0,-1),
    在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,
    如图△A1B1C1即为所求.
    (3)△ABC绕点C旋转180°后得到的△A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,
    ∵A(-1,2),B(-3,1).C(0,-1),
    ∴A2、B2、C2的横坐标分别为1,3,0,
    纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,
    ∴A2(1,-4)、B2(3,-3)、C2(0,-1),
    在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,
    如图△A2B2C2即为所求.

    【点睛】
    本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.
    8、(1);(2)见解析;(3)12
    【分析】
    (1)根据平面直角坐标系写出点的坐标即可;
    (2)找到点关于轴对称的对应点,顺次连接,则即为所求;
    (3)根据正方形的面积减去三个三角形的面积即可求得的面积
    【详解】
    (1)根据平面直角坐标系可得的坐标为,
    故答案为:
    (2)如图所示,找到点关于轴对称的对应点,顺次连接,则即为所求;

    (3)的面积为
    故答案为:
    【点睛】
    本题考查了坐标与图形,轴对称的性质与作图,掌握轴对称的性质是解题的关键.
    9、(1)见解析;(2),,
    【分析】
    (1)利用平移变换的性质分别作出,,的对应点,,即可.
    (2)根据平面直角坐标系写出,,的坐标.
    【详解】
    解:(1)如图,△即为所求,

    (2)根据平面直角坐标系可得:,,.
    【点睛】
    本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.
    10、(1);(2)见解析;(3)A1(1,5),C1(4,3)
    【分析】
    (1)根据三角形面积公式进行计算即可得;
    (2)可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y轴的对称点,连接这些对称点即可得;
    (3)根据(2)即可写出.
    【详解】
    解:(1)
    (2)如下图所示:

    (3)A1(1,5);C1(4,3)
    【点睛】
    本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.

    相关试卷

    数学七年级下册第十五章 平面直角坐标系综合与测试随堂练习题:

    这是一份数学七年级下册第十五章 平面直角坐标系综合与测试随堂练习题,共28页。试卷主要包含了平面直角坐标系内一点P,如图,A,若点在第三象限,则点在.,在平面直角坐标系中,点等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评,共31页。试卷主要包含了已知点A等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题,共29页。试卷主要包含了如图,A,已知点A,在平面直角坐标系中,点在等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map