开学活动
搜索
    上传资料 赚现金

    2021-2022学年基础强化沪教版七年级数学第二学期第十五章平面直角坐标系单元测试试卷(含答案解析)

    2021-2022学年基础强化沪教版七年级数学第二学期第十五章平面直角坐标系单元测试试卷(含答案解析)第1页
    2021-2022学年基础强化沪教版七年级数学第二学期第十五章平面直角坐标系单元测试试卷(含答案解析)第2页
    2021-2022学年基础强化沪教版七年级数学第二学期第十五章平面直角坐标系单元测试试卷(含答案解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十五章 平面直角坐标系综合与测试单元测试课堂检测

    展开

    这是一份2021学年第十五章 平面直角坐标系综合与测试单元测试课堂检测,共29页。试卷主要包含了点在第四象限,则点在第几象限,若点P,在平面直角坐标系中,点在等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系单元测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、根据下列表述,能够确定具体位置的是(  )
    A.北偏东25°方向 B.距学校800米处
    C.温州大剧院音乐厅8排 D.东经20°北纬30°
    2、根据下列表述,能确定位置的是( )
    A.光明剧院8排 B.毕节市麻园路
    C.北偏东40° D.东经116.16°,北纬36.39°
    3、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    4、点在第四象限,则点在第几象限(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    5、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
    A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)
    6、若点P(2,b)在第四象限内,则点Q(b,-2)所在象限是( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    7、在平面直角坐标系中,点在( )
    A.轴正半轴上 B.轴负半轴上
    C.轴正半轴上 D.轴负半轴上
    8、△ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到△A'B'C′,则点P的坐标是(  )

    A.(4,5) B.(4,4) C.(3,5) D.(3,4)
    9、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是( )

    A.(﹣3,﹣2) B.(﹣3,2) C.(﹣2,3) D.(2,3)
    10、在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )
    A.(2,-3) B.(-2,3) C.(3,2) D.(-2,-3)
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知点M(x,3)与点N(﹣2,y)关于x轴对称,则x+y=_____.
    2、已知点A(1,3)和B(1,-3),则点A,B关于________对称.
    3、平面直角坐标系中,点P(3,-4)到x轴的距离是________.
    4、若点P(-5,a)与Q(b,)关于x轴对称,则代数式的值为___.
    5、在平面直角坐标系中,点A(m,−5)和点B(−2,n)关于x轴对称,则m+n=______.
    三、解答题(10小题,每小题5分,共计50分)
    1、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).

    (1)如图1,在BC上找一点P,使∠BAP=45°;
    (2)如图2,作△ABC的高BH.
    2、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).
    (1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;
    (2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.

    3、已知:如图,在平面直角坐标系中.
    (1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1(   ),B1(   ),C1(   );
    (2)直接写出△ABC的面积为   ;
    (3)在x轴上画点P,使PA+PC最小.

    4、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).

    (1)直接写出点B关于原点对称的点B′的坐标:  ;
    (2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
    (3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
    5、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
    (1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
    (2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2的坐标.

    6、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1).
    (1)请在图中画出ABC;
    (2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;
    (3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 .

    7、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).
    (1)画出△ABC关于y轴对称的图形△A1B1C1;
    (2)如果点D(a,b)在线段AB上,请直接写出经过(1)的变化后D的对应点D1的坐标;
    (3)请计算出的面积.

    8、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0, -1),

    (1)写出A、B两点的坐标;
    (2)画出△ABC关于y轴对称的△A1B1C1 ;
    (3)画出△ABC绕点C旋转180°后得到的△A2B2C2.
    9、如图,等腰直角△ABC中,BC=AC,∠ACB=90°,现将该三角形放置在平面直角坐标系中:
    (1)点B坐标为(0,2),点C坐标为(6,0),求点A的坐标;
    (2)点B坐标为(0,m),点C坐标为(n,0),连接OA,若P为坐标平面内异于点A的点,且以O、P、C为顶点的三角形与△OAC全等,请直接写出满足条件的点P的坐标(用含m,n的式子表示).

    10、如图所示,在平面直角坐标系中,已知,,.
    (1)在平面直角坐标系中画出,并求出的面积;
    (2)在(1)的条件下,把先关于y轴对称得到,再向下平移3个单位得到,则中的坐标分别为( ),( ),( );(直接写出坐标)
    (3)已知为轴上一点,若的面积为4,求点的坐标.


    -参考答案-
    一、单选题
    1、D
    【分析】
    根据确定位置的方法即可判断答案.
    【详解】
    A. 北偏东25°方向不能确定具体位置,缺少距离,故此选项错误;
    B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;
    C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;
    D. 东经20°北纬30°可以确定一点的位置,故此选项正确.
    故选:D.
    【点睛】
    本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键.
    2、D
    【分析】
    根据位置的确定需要两个条件对各选项分析判断即可得解.
    【详解】
    解:.光明剧院8排,没有明确具体位置,故此选项不合题意;
    .毕节市麻园路,不能确定位置,故此选项不合题意;
    .北偏东,没有明确具体位置,故此选项不合题意;
    .东经,北纬,能确具体位置,故此选项符合题意;
    故选:D.
    【点睛】
    本题考查了坐标确定位置,解题的关键是理解位置的确定需要两个条件.
    3、D
    【分析】
    由题意直接根据各象限内点坐标特征进行分析即可得出答案.
    【详解】
    ∵点A(x,5)在第二象限,
    ∴x<0,
    ∴﹣x>0,
    ∴点B(﹣x,﹣5)在四象限.
    故选:D.
    【点睛】
    本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    4、C
    【分析】
    根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.
    【详解】
    ∵点A(x,y)在第四象限,
    ∴x>0,y<0,
    ∴﹣x<0,y﹣2<0,
    故点B(﹣x,y﹣2)在第三象限.
    故选:C.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    5、C
    【分析】
    根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.
    【详解】
    解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,
    ∴点P的横坐标是-3,纵坐标是4,
    ∴点P的坐标为(-3,4).
    故选C.
    【点睛】
    本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
    6、C
    【分析】
    根据点P(2,b)在第四象限内,确定的符号,即可求解.
    【详解】
    解:点P(2,b)在第四象限内,∴,
    所以,点Q(b,-2)所在象限是第三象限,
    故选:C.
    【点睛】
    本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征.
    7、B
    【分析】
    依据坐标轴上的点的坐标特征即可求解.
    【详解】
    解:∵点(,),纵坐标为
    ∴点(,)在x轴负半轴上
    故选:B
    【点睛】
    本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为,y轴上点的横坐标为.
    8、B
    【分析】
    对应点的连线段的垂直平分线的交点,即为所求.
    【详解】
    解:如图,点即为所求,,

    故选:B.
    【点睛】
    本题考查坐标与图形变化旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心.
    9、A
    【分析】
    根据点F点N关于原点对称,即可求解.
    【详解】
    解:∵F点与N点关于原点对称,点F的坐标是(3,2),
    ∴N点坐标为(﹣3,﹣2).
    故选:A
    【点睛】
    本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.
    10、D
    【分析】
    根据“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”即可求得.
    【详解】
    解:点A(2,3)关于原点对称的点的坐标是
    故选D
    【点睛】
    本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键.
    二、填空题
    1、﹣5
    【分析】
    利用关于x轴对称的点的坐标特点可得x、y的值,进而可得答案.
    【详解】
    解:∵点M(x,3)与点N(﹣2,y)关于x轴对称,
    ∴x=﹣2,y=﹣3,
    ∴x+y=﹣5,
    故答案为:﹣5.
    【点睛】
    本题考查了坐标与图象变化的轴对称问题,如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数.相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变.
    2、x轴
    【分析】
    根据点坐标关于轴对称的变换规律即可得.
    【详解】
    解:点坐标关于轴对称的变换规律:横坐标相同,纵坐标互为相反数.
    点A(1,3)和B(1,-3),的横坐标相同,纵坐标互为相反数,
    点关于轴对称,
    故答案为:轴.
    【点睛】
    本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键.
    3、4
    【分析】
    根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.
    【详解】
    解:点P(3,-4)到x轴的距离为|﹣4|=4.
    故答案为:4.
    【点睛】
    此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.
    4、##
    【分析】
    先利用横坐标互为相反数,纵坐标不变求解 再逆用积的乘方公式即可得到答案.
    【详解】
    解: 点P(-5,a)与Q(b,)关于x轴对称,


    故答案为:
    【点睛】
    本题考查的是关于轴对称的点的坐标特点,积的乘方的逆运算,掌握“公式 与关于轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.
    5、3
    【分析】
    根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,进而可得答案.
    【详解】
    解:∵点A(m,−5)与点B(−2,n)关于x轴对称,
    ∴m=-2,n=5,
    ∴m+n=3,
    故答案是:3.
    【点睛】
    本题主要考查了关于x轴对称的点的坐标,关键是掌握关于x轴的点的坐标特点.
    三、解答题
    1、(1)见解析;(2)见解析
    【分析】
    (1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;
    (2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.
    【详解】
    解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求,

    理由如下:
    根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,
    ∴△ABM≌△BNQ,
    ∴AB=BN,∠ABM=∠BNQ,
    ∴∠BAP=∠BNP,
    ∵∠NBQ+∠BNQ=90°,
    ∴∠ABM +∠BNQ=90°,
    ∴∠ABN=90°,
    ∴∠BAP=∠BNP=45°;
    (2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.

    理由如下:
    过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,
    ∴△ACD≌△QBG,
    ∴∠ACD=∠QBG,
    ∵∠QBG+∠BQG=90°,
    ∴∠ACD +∠BQG=90°,
    ∴∠CHQ=90°,
    ∴BH⊥AC,即BH为△ABC的高.
    【点睛】
    本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
    2、(1)图见解析;A1(3,3);(2)见解析
    【分析】
    (1)直接利用平移的性质得出对应点位置进而得出答案;
    (2)直接利用旋转的性质得出对应点位置进而得出答案.
    【详解】
    解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);

    (2)如图所示:△A2B2C2,即为所求.
    【点睛】
    此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.
    3、(1)作图见解析,(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)5;(3)见解析
    【分析】
    (1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
    (2)直接利用△ABC所在长方形面积减去周围三角形面积进而得出答案;
    (3)先确定A关于轴的对称点,再连接交轴于则此时满足要求.
    【详解】
    解:(1)如图所示:△A1B1C1即为所求,
    A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);
    故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);
    (2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;
    故答案为:5;
    (3)如图所示:点P即为所求.

    【点睛】
    本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.
    4、(1)(4,﹣1);(2)见解析;(3)见解析.
    【分析】
    (1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;
    (2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;
    (3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.
    【详解】
    (1)点B关于原点对称的点B′的坐标为(4,﹣1),
    故答案为:(4,﹣1);
    (2)如图所示,△A1B1C1即为所求.

    (3)如图所示,△A2B2C2即为所求.
    【点睛】
    本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.
    5、(1)画图见解析,;(2)画图见解析,(-2,2)
    【分析】
    (1)根据关于y轴的点的坐标特征分别作出△ABC的各个顶点关于x轴的对称点,然后连线作图即可;
    (2)利用网格特点和旋转的性质画出点A2、B、C2的坐标,然后描点即可得到△A2BC2,然后写出点A2的坐标.
    【详解】
    解:(1)如图,即为所求;
    ∵是A(2,4)关于x轴对称的点,
    ∴根据关于x轴对称的点的坐标特征可知:;

    (2)如图,即为所求,
    ∴的坐标为(-2,2).

    【点睛】
    本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键.
    6、(1)见解析;(2)见解析;(3)(a-5,-b)
    【分析】
    (1)结合直角坐标系,可找到三点的位置,顺次连接即可得出△ABC.
    (2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;
    (3)根据点的坐标平移规律可得结论.
    【详解】
    解:(1)如图,ABC即为所画.

    (2)如图,A1B1C1即为所画.
    (3)点P(a,b)向左平移5个单位后的坐标为(a-5,b),关于x轴对称手点的坐标为(a-5,-b).
    故答案为:(a-5,-b)
    【点睛】
    此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置.
    7、(1)见解析;(2)(-a,b);(3)2
    【分析】
    (1)分别作出点A、B、C关于y轴的对称点,再顺次连接即可得;
    (2)根据(1)中规律即可得出答案;
    (3)用割补法可求△ABC的面积.
    【详解】
    解:(1)△A1B1C1如图所示:

    (2)∵D点的坐标为(a,b),
    ∴D1点的坐标为(-a,b);
    (3).
    【点睛】
    本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会有分割法求三角形面积.关于y轴对称点的性质:纵坐标相同,横坐标互为相反数.
    8、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析
    【分析】
    (1)根据 A,B 的位置写出坐标即可;
    (2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;
    (3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可.
    【详解】
    (1)由题意 A(-1,2),B(-3,1).
    (2)△ABC关于y轴对称的△A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,
    ∵A(-1,2),B(-3,1).C(0,-1),
    ∴A1(1,2),B1(3,1),C1(0,-1),
    在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,
    如图△A1B1C1即为所求.
    (3)△ABC绕点C旋转180°后得到的△A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,
    ∵A(-1,2),B(-3,1).C(0,-1),
    ∴A2、B2、C2的横坐标分别为1,3,0,
    纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,
    ∴A2(1,-4)、B2(3,-3)、C2(0,-1),
    在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,
    如图△A2B2C2即为所求.

    【点睛】
    本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.
    9、(1)点A的坐标;(2)P的坐标为:或或.
    【分析】
    (1)根据已知条件得到,得到,证明得到,再根据已知点的坐标计算即可;
    (2)根据题意:考虑作的对称图形,然后根据全等三角形的性质求解即可得.
    【详解】
    解:(1)过点A作轴,

    ∵,
    ∴,
    ∵在中:,
    ∴,
    ∵轴,
    ∴,
    在与中,

    ∴,
    ∴,
    又∵点B坐标为,点C坐标为,
    ∴,,
    ∴,
    ∴点A的坐标;
    (2)①作关于x轴的对称图形得到,
    ∴,
    ∵点B坐标为,点C坐标为,
    ∴,,
    ∴,
    ∴点A的坐标;
    ∴;

    ②∵点O,C关于直线对称,
    ∴作关于直线的对称图形得到,
    过点作轴,
    ∴,
    在与中,

    ∴,
    ∴,
    结合点所在的位置可得:;
    ③作关于x轴的对称图形得到,
    ∴,即,
    ∴与横坐标相同,纵坐标互为相反数,
    可得:;
    综上所述:P的坐标为:或或.
    【点睛】
    本题主要考查了坐标与图形的应用,等腰三角形的判定与性质,全等三角形的判定与性质,根据题意作出相应图形进行分类讨论是解题关键.
    10、(1)见解析,4;(2)0,-2,-2,-3,-4,0;(3)或.
    【分析】
    (1)先画出△ABC,然后再利用割补法求△ABC得面积即可;
    (2)先作出,然后结合图形确定所求点的坐标即可;
    (3)先求出PB的长,然后分P在B的左侧和右侧两种情况解答即可.
    【详解】
    解:(1)画出如图所示:
    的面积是:;
    (2)作出如图所示,则(0,-2),( -2,-3),(-4,0)
    故填:0,-2,-2,-3,-4,0;
    (3)∵P为x轴上一点,的面积为4,
    ∴,
    ∴当P在B的右侧时,横坐标为:
    当P在B的左侧时,横坐标为,
    故P点坐标为:或.

    【点睛】
    本题主要考查了轴对称、三角形的平移、三角形的面积以及平面直角坐标系中点的坐标等知识点,根据题意画出图形成为解答本题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试复习练习题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试复习练习题,共27页。试卷主要包含了在平面直角坐标系中,点A,将点P,点在,点在第四象限,则点在第几象限等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试测试题,共30页。试卷主要包含了点P关于y轴对称点的坐标是.,一只跳蚤在第一象限及x轴,已知A等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课堂检测:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课堂检测,共33页。试卷主要包含了点在,已知点A,点A个单位长度.,点关于轴对称的点的坐标是,点P等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map