初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试习题,共29页。试卷主要包含了如图,A,已知点在一,点P关于原点对称的点的坐标是,若点P,在平面直角坐标系中,点P等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线l∥x轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为( )A.(0,1) B.(2,0) C.(2,﹣1) D.(2,3)2、在平面直角坐标系中,下列各点与点(2,3)关于x轴对称的是( )A.(2,﹣3) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)3、若点P(2,b)在第四象限内,则点Q(b,-2)所在象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、如图,A、B两点的坐标分别为A(-2,-2)、B(4,-2),则点C的坐标为( )A.(2,2) B.(0,0) C.(0,2) D.(4,5)5、已知点在一、三象限的角平分线上,则的值为( )A. B. C. D.6、点P(-3,1)关于原点对称的点的坐标是( )A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)7、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )A.第四象限 B.第三象限 C.第二象限 D.第一象限8、若点在第一象限,则a的取值范围是( )A. B. C. D.无解9、在平面直角坐标系中,点P(﹣2,﹣3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10、下列各点,在第一象限的是( )A. B. C.(2,1) D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是______.2、如图,等边三角形ABC,BC的高AD=4cm,点P为AD上一动点,E为AB边的中点,则BP+EP的最小值_________.3、已知点P(3,1)关于y轴的对称点Q的坐标为 _____.4、在平面直角坐标系中,点A(-2,4)与点关于轴对称,则点的坐标为________.5、正方形ABCD在坐标系中的位置如图所示.A(0,3),B(2,4),C(3,2),D(1,10).将正方形ABCD绕D点旋转90°后,点B到达的位置坐标为_____.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)作出△ABC关于y轴的对称图形△A'B'C';(2)写出点A',B',C'的坐标;(3)在y轴上找一点P,使PA+PC的长最短.2、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点的坐标分别是,,.(1)求的面积;(2)在图中作出关于轴的对称图形;(3)写出点,的坐标.3、如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点A1 ,B1 ,C1 的坐标.4、如图,在平面直角坐标系中,已知线段AB;(1)请在y轴上找到点C,使△ABC的周长最小,画出△ABC,并写出点C的坐标;(2)作出△ABC关于y轴对称的△A'B'C';(3)连接BB',AA'.求四边形AA'B'B的面积.5、如图,等腰直角△ABC中,BC=AC,∠ACB=90°,现将该三角形放置在平面直角坐标系中:(1)点B坐标为(0,2),点C坐标为(6,0),求点A的坐标;(2)点B坐标为(0,m),点C坐标为(n,0),连接OA,若P为坐标平面内异于点A的点,且以O、P、C为顶点的三角形与△OAC全等,请直接写出满足条件的点P的坐标(用含m,n的式子表示).6、已知点P(3a﹣15,2﹣a).(1)若点P到x轴的距离是1,试求出a的值;(2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.7、如图1所示,已知点,有以点为顶点的直角的两边分别与轴、轴相交于点.(1)试说明;(2)若点坐标为,点坐标为,请直接写出与之间的数量关系;(3)如图2所示,过点作线段,交轴正半轴于点,交轴负半轴于点,使得点为中点,且,绕着顶点旋转直角,使得一边交轴正半轴于点,另一边交轴正半轴于点,此时,和是否还相等,请说明理由;(4)在(3)条件下,请直接写出的值.8、如图,ABCDx轴,且AB=CD=3,A点坐标为(-1,1),C点坐标为(1,-1),请写出点B,点D的坐标.9、在平面直角坐标系xOy中,点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称.(1)当t =-3时,点N的坐标为 ;(2)以MN为底边作等腰三角形MNP.①当t =1且直线MP经过原点O时,点P坐标为 ;②若MNP上所有点到x轴的距离都不小于a(a是正实数),则t的取值范围是 (用含a的代数式表示)10、已知A(-1,3),B(4,2),C(2,-1).(1)在平面直角坐标系中,画出△ABC及△ABC关于y轴的对称图形△A1B1C1;(2)P为x轴上一点,请在图中标出使△PAB的周长最小时的点P,并根据图象直接写出此时点P的坐标 . -参考答案-一、单选题1、D【分析】根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.【详解】解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,∴点C的纵坐标是3,根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,∵B(2,1),∴点C的横坐标是2,∴点C坐标为(2,3),故选:D.【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.2、A【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,据此直接作答即可.【详解】解:点(2,3)关于x轴对称的是 故选A【点睛】本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数”是解本题的关键.3、C【分析】根据点P(2,b)在第四象限内,确定的符号,即可求解.【详解】解:点P(2,b)在第四象限内,∴,所以,点Q(b,-2)所在象限是第三象限,故选:C.【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征.4、B【分析】根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标.【详解】解:∵A点坐标为(-2,-2),B点坐标为(4,-2),∴可以建立如下图所示平面直角坐标系,∴点C的坐标为(0,0),故选B.【点睛】本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系.5、A【分析】根据平面直角坐标系一三象限角平分线上点的特征是横纵坐标相等列式计算即可;【详解】∵点在一、三象限的角平分线上,∴,∴;故选A.【点睛】本题主要考查了一三象限角平分线上点的特征,准确分析计算是解题的关键.6、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).故选:C.【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.7、A【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点P(m,1)在第二象限内,∴m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解: 点在第一象限, 由①得: 由②得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.9、C【分析】根据第三象限内点的坐标横纵坐标都为负的直接可以判断【详解】解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限故选C【点睛】本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.10、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】解:、在第四象限,故本选项不合题意;、在第二象限,故本选项不合题意;、在第一象限,故本选项符合题意;、在第三象限,故本选项不合题意;故选:C.【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7).【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.2、4cm【分析】先连接,再根据,将转化为,最后根据两点之间线段最短,求得的长,即为的最小值.【详解】解:连接,等边中,是边上的高,是边上的中线,即垂直平分,当、、三点共线时,,等边中,是边的中点,,的最小值为4,故答案为:4cm.【点睛】本题主要考查了等边三角形的轴对称性质和勾股定理的应用等知识,解题的关键是熟练掌握和运用等边三角形的性质以及轴对称的性质,解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.3、(﹣3,1)【分析】点关于y轴的对称点坐标,横坐标为相反数,纵坐标不变;可以得到对称点Q的坐标.【详解】解:点P(3,1)关于y轴的对称点Q的坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考察坐标系中点的对称.解题的关键在于明确点在对称时坐标的变化形式.4、.【分析】根据“关于轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点关于轴对称点的坐标为.故答案为:.【点睛】本题考查了关于轴、轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5、 (4,0)或(﹣2,2)【分析】利用网格结构找出点B绕点D旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.【详解】解:如图,点B绕点D旋转90°到达点B′或B″,点B′的坐标为(4,0),B″(﹣2,2).故答案为:(4,0)或(﹣2,2).【点睛】本题主要考查了坐标与图形变化—旋转,解题的关键在于能够利用数形结合的思想进行求解.三、解答题1、(1)见解析;(2)A′(1,5),B′(1,0),C′(4,3);(3)见解析【分析】(1)分别作出点A、B、C关于y轴的对称点,再收尾顺次连接即可得;(2)根据△A'B'C'各顶点的位置,写出其坐标即可;(3)连接PC,则PC=PC′,根据两点之间线段最短,可得PA+PC的值最小.【详解】解:(1)如图所示,△A′B′C′为所求作;(2)由图可得,A′(1,5),B′(1,0),C′(4,3);(3)如图所示,连接AC′,交y轴于点P,则点P即为所求作.【点睛】本题主要考查了利用轴对称变换作图以及最短距离的问题,解题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,运用轴对称变换来解决,多数情况要作点关于某直线的对称点.关于y轴对称的点,纵坐标相同,横坐标互为相反数.2、(1);(2)见解析;(3)A1(1,5),C1(4,3)【分析】(1)根据三角形面积公式进行计算即可得;(2)可以由三个顶点的位置确定,只要能分别画出这三个顶点关于y轴的对称点,连接这些对称点即可得;(3)根据(2)即可写出.【详解】解:(1)(2)如下图所示: (3)A1(1,5);C1(4,3)【点睛】本题考查了画轴对称图形,解题的关键是掌握画轴对称图形的方法.3、(1)见解析;(2)(1,5),(3,0),(4,3)【分析】(1)根据对称性即可在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)结合(1)即可写出点A1,B1,C1的坐标.【详解】解:(1)如图,△A1B1C1即为所求;(2)A1(1,5),B1(3,0),C1(4,3);故答案为:(1,5),(3,0),(4,3).【点睛】本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称性质.关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标相同.4、(1)见详解,点C 的坐标为(0,4);(2)见详解;(3)16【分析】(1)作B点关于y轴的对称点 连接与y轴的交点即为C点,即可求出点C的坐标;(2)根据网格画出△ABC关于y轴对称的△A'B'C'即可;(3)根据梯形面积公式即可求四边形AA'B'B的面积.【详解】解:(1)所要求作△ABC 如图所示,点C的坐标为(0,4);(2)△A'B'C'即为所求;(3)点A,B,A',B'的坐标分别为:(﹣3,1)、(﹣1,5)、(3,1)、(1,5);∴四边形AA'B'B的面积为: = (2+6)×4=16.【点睛】本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称的性质.5、(1)点A的坐标;(2)P的坐标为:或或.【分析】(1)根据已知条件得到,得到,证明得到,再根据已知点的坐标计算即可;(2)根据题意:考虑作的对称图形,然后根据全等三角形的性质求解即可得.【详解】解:(1)过点A作轴,∵,∴,∵在中:,∴,∵轴,∴,在与中,,∴,∴,又∵点B坐标为,点C坐标为,∴,,∴,∴点A的坐标;(2)①作关于x轴的对称图形得到,∴,∵点B坐标为,点C坐标为,∴,,∴,∴点A的坐标;∴;②∵点O,C关于直线对称,∴作关于直线的对称图形得到,过点作轴,∴,在与中,,∴,∴,结合点所在的位置可得:;③作关于x轴的对称图形得到,∴,即,∴与横坐标相同,纵坐标互为相反数,可得:;综上所述:P的坐标为:或或.【点睛】本题主要考查了坐标与图形的应用,等腰三角形的判定与性质,全等三角形的判定与性质,根据题意作出相应图形进行分类讨论是解题关键.6、(1)或;(2)或;(3)或.【分析】(1)根据“点到轴的距离是1”可得,由此即可求出的值;(2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;(3)先根据“点位于第三象限”可求出的取值范围,再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案.【详解】解:(1)点到轴的距离是1,且,,即或,解得或;(2)当时,点的坐标为,则点的坐标为,即,当时,点的坐标为,则点的坐标为,即,综上,点的坐标为或;(3)点位于第三象限,,解得,点的横、纵坐标都是整数,或,当时,,则点的坐标为,当时,,则点的坐标为,综上,点的坐标为或.【点睛】本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键.7、(1)见解析;(2);(3)相等,见解析;(4)9【分析】(1)过点作轴于点,轴于点,证明即可得到结论;(2),由可得结论;(3)连接OP,根据题意可得,,从而得,再证明S可得,进一步可得结论;(4)过点P作PQ⊥y轴,得PQ=OQ=3,根据题意可得,故BQ=3,从而可求出,由(3)得,从而可得【详解】解:(1)过点作轴于点,轴于点,∵点坐标为∴又∵∴∵∴∴(2)由(1)知∴ ∵点坐标为,点坐标为,且 ∴ ∴ ∴(3)相等,理由:连接,如图,∵,且,为中点∴,∴∵∴又∵∴在和中 ∴∴(4)由(3)知∴ 过点P作PQ⊥y轴于点Q,∵P(3,-3)∴PQ=OQ=3∵ ∴ ∴ ∴ ∴ ∴=9【点睛】本题主要考查了坐标与图形的性质,全等三角形的判定与性质,等腰直角三角形的性质等知识,找出判定三角形全等的条件是解答本题的关键8、B(2,1),D(﹣2,﹣1).【分析】根据平行于x轴的直线上点的坐标的特点求出纵坐标,再根据AB=CD=3得出横坐标.【详解】解:∵AB∥CD∥x轴,A点坐标为(﹣1,1),点C(1,﹣1),∴点B、D的纵坐标分别是1,﹣1,∵AB=CD=3,∴点B、D的横坐标分别是-1+3=2,1-3=-2,∴B(2,1),D(﹣2,﹣1).【点睛】本题主要是考查平行于x轴的直线的特点,解题关键是明确平行于x轴的直线上点的纵坐标相同.9、(1)(2,-1);(2)①(-2,1);②t≥a+2或t≤-a-2【分析】(1)先求出对称轴,再表示N点坐标即可;(2)①以MN为底边作等腰三角形MNP,则点P在直线y=t=1上,直线OM与y=1的交点即为所求;②表示出M、N、P的坐标,比较纵坐标的绝对值即可.【详解】(1)过点(0,t)且垂直于y轴的直线解析式为y=t∵点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称∴可以设N点坐标为(2,n),且MN中点在y=t上∴,记得∴点N坐标为∴当t =-3时,点N的坐标为(2)①∵以MN为底边作等腰三角形MNP,且点M(2,t-2)与点N直线y=t对称.∴点P在直线y=t上,且P是直线OM与y=1的交点当t =1时M(2,-1),N(2,3)∴OM直线解析式为∴当y=1时,∴P点坐标为(-2,1)②由题意得,点M坐标为(2,t-2),点N坐标为,点P坐标为∵,MNP上所有点到x轴的距离都不小于a∴只需要或者当M、N、P都在x轴上方时,,此时,解得t≥a+2当MNP上与x轴有交点时,此时MNP上所有点到x轴的距离可以为0,不符合要求;当M、N、P都在x轴下方时,,此时,解得t≤-a-2综上t≥a+2或t≤-a-2【点睛】本题考查坐标与轴对称、等腰三角形的性质等知识,解题的关键是利用轴对称表示坐标,属于中考常考题型.10、(1)见解析;(2)见解析,【分析】(1)根据关于y轴对称点的坐标特点得到△A1B1C1各顶点的坐标,然后描出各点,然后顺次连接即可;(2)作点A关于x轴的对称点A1,连接A1B交x轴与点P.【详解】解:(1)如图△ABC及△A1B1C1即为所求作的图形;(2)如图点P即为所求作的点,此时点P的坐标(2,0) .【点睛】本题主要考查的是轴对称变换,掌握关于轴对称点的坐标特点是解题的关键.
相关试卷
这是一份数学第十五章 平面直角坐标系综合与测试一课一练,共29页。试卷主要包含了点关于轴对称的点的坐标是,已知点M,已知点A,在平面直角坐标系中,点等内容,欢迎下载使用。
这是一份数学七年级下册第十五章 平面直角坐标系综合与测试课后复习题,共30页。试卷主要包含了点P关于原点对称的点的坐标是,已知点在一,已知点A,点P的坐标为等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共30页。试卷主要包含了将点P,点P关于原点对称的点的坐标是等内容,欢迎下载使用。