搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系专题测评试题(含答案解析)

    2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系专题测评试题(含答案解析)第1页
    2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系专题测评试题(含答案解析)第2页
    2021-2022学年度沪教版七年级数学第二学期第十五章平面直角坐标系专题测评试题(含答案解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时作业

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时作业,共26页。试卷主要包含了点A的坐标为,则点A在,平面直角坐标系内一点P,已知A等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点,关于轴对称点的坐标是(    A. B. C. D.2、根据下列表述,能确定位置的是(    A.光明剧院8排 B.毕节市麻园路C.北偏东40° D.东经116.16°,北纬36.39°3、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为(    A. B. C. D.4、点A的坐标为,则点A在(    A.第一象限 B.第二象限 C.第三象限 D.第四象限5、点Px轴的距离是3,到y轴的距离是2,且点Py轴的左侧,则点P的坐标是(  )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)6、平面直角坐标系内一点P(﹣3,2)关于原点对称的点的坐标是(  )A.(2,﹣3) B.(3,﹣2) C.(﹣2,﹣3) D.(2,3)7、若点在第三象限内,则m的值可以是(    A.2 B.0 C. D.8、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(ab)平移后的对应点的坐标为(    A.(ab) B.(-a,-b) C.(a+2,b+4) D.(a+4,b+2)9、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点AB分别对应点CD,若C(5,x),Dy,0),则xy的值是(    A.﹣1 B.0 C.1 D.210、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是(  )A.直线x=﹣1 B.x C.y D.直线x第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知点A(1,3)和B(1,-3),则点AB关于________对称.2、在平面直角坐标系中,点Am,﹣4)与点B(﹣5,n)关于y轴对称,则点(mn)在第 _____象限.3、若点y轴上,则m=_____.4、在平面直角坐标系中,与点关于原点对称的点的坐标是________.5、点P(﹣2,﹣4)关于y轴对称的点的坐标是_________.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中有一个△ABC,顶点A(-1,3),B(2,0),C(-3,-1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为_______;点B关于y轴对称的点坐标为_______;(2)若网格上的每个小正方形的边长为1,则△ABC的面积是_______.2、如图,三个顶点的坐标分别是(1)请画出关于x轴对称的图形(2)求的面积;(3)在x轴上求一点P,使周长最小,请画出,并通过画图求出P点的坐标.3、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC(2)作△ABC关于x轴对称的△DEF,其中点ABC的对应点分别为点DEF(3)连接CECF,请直接写出△CEF的面积.4、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为CBx轴负半轴于点A,过点B作射线,作射线CDBM于点D,且(1)求证:点A为线段BC的中点.(2)求点D的坐标.5、如图,方格图中每个小正方形的边长为1,点ABC都是格点.(1)画出△ABC关于直线MN对称的(2)若B为坐标原点,请写出的坐标,并直接写出的长度..(3)如图2,AC是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)6、如图,在平面直角坐标系中,△ABC的两个顶点ABx轴上,顶点Cy轴上,且∠ACB=90°.(1)图中与∠ABC相等的角是    (2)若AC=3,BC=4,AB=5,求点C的坐标.7、如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,1),B(0,1),C(0,4).(1)画出△ABC关于x轴对称的△A1B1C1ABC的对应点分别为A1B1C1(2)画出△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2ABC的对应点分别为A2B2C2.连接B2C2,并直接写出线段B2C2的长度.8、如图,ABCDx轴,且ABCD=3,A点坐标为(-1,1),C点坐标为(1,-1),请写出点B,点D的坐标.9、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(aβ)表示点P在平面内的位置,并记为P(aβ).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.(2)如果点AB在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.10、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点A的坐标为(1,-4).(1)△A1B1C1是△ABC关于y轴的对称图形,则点A的对称点A1的坐标是_______,并在图中画出△A1B1C1(2)将△ABC绕原点逆时针旋转90°得到△A2B2C2,则A点的对应点A2的坐标是______,并在图中画出△A2B2C2  -参考答案-一、单选题1、A【分析】平面直角坐标系中任意一点Pxy),关于x轴的对称点的坐标是(x,-y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【详解】解:点A(3,-4)关于x轴的对称点的坐标是(3,4),故选:A【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.2、D【分析】根据位置的确定需要两个条件对各选项分析判断即可得解.【详解】解:.光明剧院8排,没有明确具体位置,故此选项不合题意;.毕节市麻园路,不能确定位置,故此选项不合题意;.北偏东,没有明确具体位置,故此选项不合题意;.东经,北纬,能确具体位置,故此选项符合题意;故选:D.【点睛】本题考查了坐标确定位置,解题的关键是理解位置的确定需要两个条件.3、C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:33=6,纵坐标为:5+4=1,即(6,1).故选:C.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.4、A【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:由题意,∵点A的坐标为∴点A在第一象限;故选:A【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、A【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点Py轴左侧,∴点P在第二象限或第三象限,∵点Px轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.6、B【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点Pxy)关于原点O的对称点是P(﹣x,﹣y),进而得出答案.【详解】解答:解:点P(﹣3,2)关于原点对称的点的坐标是:(3,﹣2).故选:B【点睛】此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键.7、C【分析】根据第三象限内点的特点可知横纵坐标都为负,据此判断即可.【详解】解:∵点在第三象限内,m的值可以是故选C【点睛】本题考查了第三象限内点的坐标特征,掌握各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.8、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(ab)平移后的对应点的坐标.【详解】解:∵△ABO′是由△ABO平移得到的,点A的坐标为(-1,2),它的对应点A′的坐标为(3,4),∴△ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,∴△ABO内任意点P(ab)平移后的对应点P′的坐标为(a+4,b+2).故选:D.【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.9、C【分析】由对应点坐标确定平移方向,再由平移得出xy的值,即可计算x+y【详解】A(3,﹣2),B(1,0)平移后的对应点C(5,x),Dy,0),∴平移方法为向右平移2个单位,x=﹣2,y=3,x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.10、B【分析】根据轴对称的性质判断即可.【详解】解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x故选:B.【点睛】本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键.二、填空题1、x【分析】根据点坐标关于轴对称的变换规律即可得.【详解】解:点坐标关于轴对称的变换规律:横坐标相同,纵坐标互为相反数.A(1,3)和B(1,-3),的横坐标相同,纵坐标互为相反数,关于轴对称,故答案为:轴.【点睛】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键.2、四【分析】先根据关于y轴对称的点的特征:纵坐标相同,横坐标互为相反数求出mn的值,再根据每个象限内点的坐标特点求解即可.【详解】解:∵点Am,﹣4)与点B(﹣5,n)关于y轴对称,m=5,n=-4,∴点(mn)即点(5,-4)在第四象限,故答案为:四.【点睛】本题主要考查了关于y轴对称的点的坐标特征,根据点的坐标判断点所在的象限,熟练掌握关于y对称的点的坐标特征是解题的关键.3、-4【分析】轴上点的坐标,横坐标为,可知,进而得到的值.【详解】解:轴上故答案为:【点睛】本题考察了坐标轴上点坐标的特征.解题的关键在于理解轴上点坐标的形式.在轴上点的坐标,横坐标为;在轴上点的坐标,纵坐标为4、(-3,-1)【分析】由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.【详解】解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3,-1).故答案为:(-3,-1).【点睛】本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点Pxy),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.5、(2,﹣4)【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点P(-2,-4)关于y轴对称的点的坐标是(2,-4).故答案为:(2,-4).【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.三、解答题1、(1)图见解析,(-1,-3),(-2,0);(2)9【分析】(1)根据题意直接利用关于坐标轴对称点的性质得出各对应点位置即可;(2)由题意利用△ABC所在矩形面积减去周围三角形面积进行计算进而得出答案.【详解】解:(1)如图,△A1B1C1即为所作,A关于x轴对称的点坐标为 (-1,-3);B关于y轴对称的点坐标为:(-2,0);故答案为:(-1,-3),(-2,0);(2)△ABC的面积是:4×5-×2×4-×3×3-×1×5=9.故答案为:9.【点睛】本题主要考查轴对称变换以及求三角形面积-补全法,根据题意得出对应点位置是解题的关键.2、(1)见解析;(2)3.5;(3)图形见解析,P点的坐标为【分析】(1)找到关于轴对称的点,顺次连接,则即为所求;(2)根据网格的特点,根据即可求得的面积;(3)连接,与轴交于点,根据对称性即可求得,点即为所求.【详解】解:(1)找到关于轴对称的点,顺次连接,则即为所求,如图(2)(3)根据作图可知,P点的坐标为【点睛】本题考查了画轴对称图形,坐标与图形,轴对称的性质求线段和的最小值,掌握轴对称的性质是解题的关键.3、(1)作图见详解;(2)作图见详解;(3)的面积为2.【分析】(1)直接在坐标系中描点,然后依次连线即可;(2)先确定ABC三点关于x轴对称的点的坐标,然后依次连接即可;(3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.【详解】解:(1)如图所示,即为所求;(2)ABC三点关于x轴对称的点的坐标分别为:然后描点、连线,即为所求;(3)由图可得:的面积为2.【点睛】题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.4、(1)证明见解析,(2)(8,2).【分析】(1)过点CCQOAQ,证△CQA≌△BOA,即可证明点A为线段BC的中点;(2)过点CCROBR,过点DDSOBS,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.【详解】(1)证明:过点CCQOAQ∵点B的坐标是,点C的坐标为CQ=OB=4,∵∠CQO=∠BOA=90°,∠CAQ=∠BAO∴△CQA≌△BOACA=AB∴点A为线段BC的中点.(2)过点CCROBR,过点DDSOBS∴∠CRB=∠DSB=∠CBD=90°,∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,∴∠CBR=∠SDB∴∠BCD=∠BDC=45°,CB=DB∴△CRB≌△BSDCR=SBRB=DS∵点B的坐标是,点C的坐标为CR=SB=6,RB=DS=8,OS=SBOB=2,D的坐标为(8,2).【点睛】本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.5、(1)画图见解析;(2);(3)画图见解析【分析】(1)分别确定关于对称的对称点 再顺次连接从而可得答案;(2)根据在坐标系内的位置直接写其坐标与的长度即可;(3)先确定关于的对称点,再连接 从而可得答案.【详解】解:(1)如图1,是所求作的三角形,(2)如图1,为坐标原点,  (3)如图2,点即为所求作的点.【点睛】本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.6、(1)∠ACO;(2)点C的坐标为(0,).【分析】(1)由同角的余角相等,可得到∠ABC=ACO(2)利用面积法可求得CO的长,进而得到点C的坐标.【详解】解:(1)∵OCAB,∠ACB=90°.∴∠ABC+BCO=ACO+BCO=90°,∴∠ABC=ACO故答案为:∠ACO(2)∵AC=3,BC=4,AB=5,∴三角形ABC是直角三角形,∠ACB=90°ABCO=ACBC,即CO==∴点C的坐标为(0,).【点睛】本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.7、(1)作图见解析;(2)作图见解析,【分析】(1)关于轴对称,即对应点横坐标不变,纵坐标互为相反数,找出坐标即可;(2)根据旋转的性质可画出图形,即可找出的坐标,由即可得出答案.【详解】(1)关于轴对称的如图所作,,(2)绕原点逆时针方向旋转得到的如图所示,由旋转的性质得:【点睛】本题考查轴对称与旋转作图,掌握轴对称的性质以及旋转的性质是解题的关键.8、B(2,1),D(﹣2,﹣1).【分析】根据平行于x轴的直线上点的坐标的特点求出纵坐标,再根据ABCD=3得出横坐标.【详解】解:∵ABCDx轴,A点坐标为(﹣1,1),点C(1,﹣1),∴点BD的纵坐标分别是1,﹣1,ABCD=3,∴点BD的横坐标分别是-1+3=2,1-3=-2,B(2,1),D(﹣2,﹣1).【点睛】本题主要是考查平行于x轴的直线的特点,解题关键是明确平行于x轴的直线上点的纵坐标相同.9、(1)6,30°;(2)见解析,30【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.【详解】(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.答案:6,30°(2)如图所示:A(5,30),B(12,120),∴∠BOX=120°,∠AOX=30°,∴∠AOB=90°,OA=5,OB=12,∴△AOB的面积为OA·OB=30.【点睛】本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.10、(1)图见解析,A1(-1,-4);(2)图见解析,A2(4,1).【分析】(1)根据网格结构,找出点ABC关于y轴对称的点A1B1C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构,找出点ABC绕点逆时针旋转90°的对应点A2B2C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1(-1,-4);(2)如图所示,△A2B2C2即为所求作的三角形,点A2(4,1).故答案为:(4,1).【点睛】本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习,共28页。试卷主要包含了在平面直角坐标系中,点P,点在,平面直角坐标系中,点P,下列各点,在第一象限的是,已知点M等内容,欢迎下载使用。

    数学七年级下册第十五章 平面直角坐标系综合与测试当堂检测题:

    这是一份数学七年级下册第十五章 平面直角坐标系综合与测试当堂检测题,共28页。试卷主要包含了已知A,点关于轴对称的点的坐标是等内容,欢迎下载使用。

    数学七年级下册第十五章 平面直角坐标系综合与测试巩固练习:

    这是一份数学七年级下册第十五章 平面直角坐标系综合与测试巩固练习,共27页。试卷主要包含了一只跳蚤在第一象限及x轴,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map