搜索
    上传资料 赚现金
    英语朗读宝

    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题攻克试卷(含答案解析)

    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题攻克试卷(含答案解析)第1页
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题攻克试卷(含答案解析)第2页
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题攻克试卷(含答案解析)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时作业

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时作业,共34页。
    七年级数学第二学期第十三章相交线 平行线专题攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列说法中,正确的是(  )
    A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离
    B.互相垂直的两条直线不一定相交
    C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm
    D.过一点有且只有一条直线垂直于已知直线
    2、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )

    A.39° B.41° C.49° D.51°
    3、如图,直线被所截,下列说法,正确的有( )

    ①与是同旁内角;
    ②与是内错角;
    ③与是同位角;
    ④与是内错角.
    A.①③④ B.③④ C.①②④ D.①②③④
    4、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )

    A.80° B.90° C.100° D.110°
    5、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于(  )

    A.60° B.90° C.120° D.150°
    6、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )

    A.4个 B.3个 C.2个 D.1个
    7、如图,下列给定的条件中,不能判定的是(  )

    A. B. C. D.
    8、∠A两边分别垂直于∠B的两边,∠A与∠B的关系是( )
    A.相等 B.互补 C.相等或互补 D.不能确定
    9、如图,下列条件能判断直线l1//l2的有( )
    ①;②;③;④;⑤

    A.1个 B.2个 C.3个 D.4个
    10、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )

    A.S1>S2 B.S1=S2 C.S1<S2 D.不确定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知三条不同的直线a,b,c在同一平面内,下列四个命题:
    ①如果ab,a⊥c,那么b⊥c;
    ②如果ba,ca,那么bc;
    ③如果b⊥a,c⊥a,那么b⊥c; 
    ④如果b⊥a,c⊥a,那么bc.
    其中正确的是__.(填写序号)
    2、如图,已知 AB∥CD∥EF,BC∥AD,AC 平分∠BAD,那么图中与∠AGE 相等的角(不包括∠AGE)有_____个.

    3、判断正误:
    (1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )
    (2)如果两个角相等,那么这两个角是对顶角( )
    (3)有一条公共边的两个角是邻补角( )
    (4)如果两个角是邻补角,那么它们一定互补( )
    (5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )
    4、已知直线AB、CD相交于点O,且A、B和C、D分别位于点O两侧,OE⊥AB,,则____________.
    5、已知:如图,直线AB、CD被直线GH所截,,求证: ABCD.完成下面的证明:

    证明:∵AB被直线GH所截,
    ∴_____

    ∴______
    ∴______________(________)(填推理的依据).
    三、解答题(10小题,每小题5分,共计50分)
    1、推理填空:如图,直线,并且被直线所截,交和于点,平分,平分,使说明.

    解:∵,
    ∴( )
    ∵平分,平分.
    ∴, ( )

    ∴( )

    ∴( )
    2、如图,已知点O是直线AB上一点,射线OM平分.
    (1)若,则______度;
    (2)若,求的度数.

    3、如图直线,直线与分别和交于点交直线b于点C.

    (1)若,直接写出 ;
    (2)若,则点B到直线的距离是 ;
    (3)在图中直接画出并求出点A到直线的距离.
    4、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.

    (1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为   °,∠CON的度数为   °;
    (2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为   °;
    (3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为   °;∠DOC与∠BON的数量关系是∠DOC ∠BON(填“>”、“=”或“<”);
    (4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为 °;∠AOM﹣∠CON的度数为   °
    5、直线、相交于点,平分,,,求与的度数.

    6、阅读下面的推理过程,将空白部分补充完整.
    已知:如图,在△ABC中,FGCD,∠1 = ∠3.

    求证:∠B + ∠BDE= 180°.
    解:因为FGCD(已知),
    所以∠1= .
    又因为∠1 = ∠3 (已知),
    所以∠2 = (等量代换).
    所以BC ( ),
    所以∠B + ∠BDE = 180°(___________________).
    7、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.

    (1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.
    (2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?
    (3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.
    8、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.
    (1)如图①,若∠BEF=130°,则∠FGC=   度;
    (2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;
    (3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC=   度.

    解:如图②,过点E作EM∥FG,交CD于点M.
    ∵AB∥CD(已知)
    ∴∠BEM=∠EMC(    )
    又∵EM∥FG
    ∴∠FGC=∠EMC(    )
    ∠EFG+∠FEM=180°(    )
    即∠FGC=(    )(等量代换)
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(    )
    又∵∠EFG=90°
    ∴∠FEM=90°
    ∴∠FEB﹣∠FGC=   
    即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.
    9、在三角形ABC中,于D,F是BC上一点,于H,E在AC上,.

    (1)如图1,求证:;
    (2)如图2,若,请直接写出图中与互余的角,不需要证明.
    10、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.
    (1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;
    (2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);
    (3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).


    -参考答案-
    一、单选题
    1、C
    【分析】
    根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.
    【详解】
    从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;
    在同一平面内,互相垂直的两条直线一定相交,即选项B错误;
    直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;
    在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;
    故选:C.
    【点睛】
    本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.
    2、C
    【分析】
    由题意直接根据平行线的性质进行分析计算即可得出答案.
    【详解】
    解:如图,

    ∵AB∥CD,∠C=131°,
    ∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
    ∵AE∥CF,
    ∴∠A=∠C=49°(两直线平行,同位角相等).
    故选:C.
    【点睛】
    本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
    3、D
    【分析】
    根据同位角、内错角、同旁内角的定义可直接得到答案.
    【详解】
    解:①与是同旁内角,说法正确;
    ②与是内错角,说法正确;
    ③与是同位角,说法正确;
    ④与是内错角,说法正确,
    故选:D.
    【点睛】
    此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
    4、D
    【分析】
    直接利用对顶角以及平行线的性质分析得出答案.
    【详解】
    解:

    ∵∠1=70°,
    ∴∠1=∠3=70°,
    ∵ABDC,
    ∴∠2+∠3=180°,
    ∴∠2=180°−70°=110°.
    故答案为:D.
    【点睛】
    此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
    5、C
    【分析】
    先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.
    【详解】
    解:∵AB∥CD,
    ∴∠1=∠CEF,
    又∵∠2+∠CEF=180°,
    ∴∠2+∠1=180°,
    ∵∠2=2∠1,
    ∴3∠1=180°,
    ∴∠1=60°,
    ∴∠2=120°,
    故选C.

    【点睛】
    本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.
    6、B
    【分析】
    由邻补角,角平分线的定义,余角的性质进行依次判断即可.
    【详解】
    解:∵∠AOE=90°,∠DOF=90°,
    ∴∠BOE=90°=∠AOE=∠DOF,
    ∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,
    ∴∠EOF=∠BOD,∠AOF=∠DOE,
    ∴当∠AOF=50°时,∠DOE=50°;
    故①正确;
    ∵OB平分∠DOG,
    ∴∠BOD=∠BOG,
    ∴∠BOD=∠BOG=∠EOF=∠AOC,
    故④正确;
    ∵,
    ∴∠BOD=180°-150°=30°,

    故③正确;
    若为的平分线,则∠DOE=∠DOG,
    ∴∠BOG+∠BOD=90°-∠EOE,
    ∴∠EOF=30°,而无法确定,
    ∴无法说明②的正确性;
    故选:B.
    【点睛】
    本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.
    7、A
    【分析】
    根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
    【详解】
    解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
    B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
    C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
    D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
    故选A.
    【点睛】
    本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
    8、C
    【分析】
    分别画出∠A两边分别垂直于∠B的两边,然后利用同角的余角相等进行求解即可.
    【详解】
    解:如图所示:BE⊥AE,BC⊥AC,
    ∴∠BCF=∠AEF=90°,
    ∴∠A+∠AFE=90°,∠B+∠BFC=90°,
    ∴∠A=∠B

    如图所示:BD⊥AD,BC⊥AC,
    ∴∠ADE=∠BCE=90°,
    ∴∠A+∠BEC=90°,∠CBE+∠BEC=90°,
    ∴∠A=∠CBE,
    ∵∠CBE+∠DBC=180°,
    ∴∠A+∠DBC=180°,

    综上所述,∠A与∠B的关系是相等或互补,
    故选C.
    【点睛】
    本题主要考查了垂直的定义,同角的余角相等,以及等角的补角之间的关系,解题的关键在于能够根据题意画出图形进行求解.
    9、D
    【分析】
    根据平行线的判定定理进行依次判断即可.
    【详解】
    ①∵∠1,∠3互为内错角,∠1=∠3,∴;
    ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
    ③∠4,∠5互为同位角,∠4=∠5,∴;
    ④∠2,∠3没有位置关系,故不能证明 ,
    ⑤,,
    ∴∠1=∠3,
    ∴,
    故选D.
    【点睛】
    此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
    10、B
    【分析】
    由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.
    【详解】
    解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.
    故选:B.
    【点睛】
    本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.
    二、填空题
    1、①②④
    【分析】
    根据两直线的位置关系一一判断即可.
    【详解】
    解:在同一个平面内,①如果ab,a⊥c,那么b⊥c,正确;
    ②如果ba,ca,那么bc,正确;
    ③如果b⊥a,c⊥a,那么bc,错误;
    ④如果b⊥a,c⊥a,那么bc,正确;
    故答案为:①②④.
    【点睛】
    本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.
    2、5
    【分析】
    由AB∥CD∥EF,可得∠AGE=∠GAB=∠DCA;由BC∥AD,可得∠GAE=∠GCF;又因为AC平分∠BAD,可得∠GAB=∠GAE;根据对顶角相等可得∠AGE=∠CGF.所以图中与∠AGE相等的角有5个.
    【详解】
    解:∵AB∥CD∥EF,
    ∴∠AGE=∠GAB=∠DCA;
    ∵BC∥AD,
    ∴∠GAE=∠GCF;
    又∵AC平分∠BAD,
    ∴∠GAB=∠GAE;
    ∵∠AGE=∠CGF.
    ∴∠AGE=∠GAB=∠DCA=∠CGF=∠GAE=∠GCF.
    ∴图中与∠AGE相等的角有5个
    故答案为:5.
    【点睛】
    本题考查对顶角、邻补角及角平分线的定义和平行线的性质,根据题意仔细观察图形并找出全部答案是解题关键.
    3、(1)×;(2)×;(3)×;(4)√;(5)×
    【分析】
    根据对顶角与邻补角的定义与性质分析判断即可求解.
    【详解】
    (1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
    (2)如果两个角相等,那么这两个角不一定是对顶角,错误;
    (3)有一条公共边的两个角不一定是邻补角,错误;
    (4)如果两个角是邻补角,那么它们一定互补,正确;
    (5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;
    故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.
    【点睛】
    本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.
    4、130°或50°
    【分析】
    根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可
    【详解】
    ①如图,






    ②如图,






    综上所述,或
    故答案为:130°或50°
    【点睛】
    本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.
    5、3 180° AB CD 同旁内角互补,两直线平行
    【分析】
    先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定AB∥CD.
    【详解】
    证明:∵AB被直线GH所截,∠1=112°,
    ∴∠1=∠3=112°
    ∵∠2=68°,
    ∴∠2+∠3=180°,
    ∴AB∥CD,(同旁内角互补,两直线平行)
    故答案为∠3,180°,AB,CD,同旁内角互补,两直线平行.
    【点睛】
    本题主要考查了平行线的判定,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.
    三、解答题
    1、两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
    【分析】
    利用平行线的性质定理和判定定理解答即可.
    【详解】
    解:∵AB∥CD,
    ∴∠AME=∠CNE.(两直线平行,同位角相等),
    ∵MP平分∠AME,NQ平分∠CNE,
    ∴∠1=∠AME,=∠CNE.( 角平分线的定义),
    ∵∠AME=∠CNE,
    ∴∠1=∠2.(等量代换),
    ∵∠1=∠2,
    ∴MP∥NQ.(同位角相等,两直线平行).
    故答案为:两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
    【点睛】
    此题考查的是平行线的判定及性质,掌握平行线的性质定理和判定定理是解决此题的关键.
    2、(1),(2)
    【分析】
    (1)根据平角的定义可求;
    (2)根据和,代入解方程求出即可.
    【详解】
    解:(1)∵,
    ∴,
    故答案为:.
    (2)∵OM平分,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.
    3、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.
    【分析】
    (1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;
    (2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;
    (3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.
    【详解】
    解:(1)∵,
    ∴,
    ∵,,
    ∴,
    故答案为:;
    (2)∵,
    ∴点B到直线AC的距离为线段,
    故答案为:4;
    (3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,

    ∵,
    ∴为直角三角形,
    ∴SΔABC=12×AC×AB=12×BC×AD,
    即,
    解得:,
    ∴点A到直线BC的距离为.
    【点睛】
    题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.
    4、(1)120;150;(2)30°;(3)30,=;(4)150;30.
    【分析】
    (1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;
    (2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;
    (3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
    (4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.
    【详解】
    解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,
    ∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.
    故答案为120;150;
    (2)∵三角板一边OM恰好在∠BOC的角平分线OE上,
    由(1)得∠BOC=120°,
    ∴∠BOM=∠BOC=60°,
    又∵∠MON=∠BOM+∠BON=90°,
    ∴∠BON=90°﹣60°=30°.
    故答案为30°;
    (3)∵∠AOD=∠BON(对顶角),∠BON=30°,
    ∴∠AOD=30°,
    又∵∠AOC=60°,
    ∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
    故答案为30,=;
    (4)∵MN⊥AB,
    ∴∠AON与∠MNO互余,
    ∵∠MNO=60°(三角板里面的60°角),
    ∴∠AON=90°﹣60°=30°,
    ∵∠AOC=60°,
    ∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,
    ∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,
    ∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.
    故答案为150;30.
    【点睛】
    本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.
    5、∠3=50°,∠2=65°.
    【分析】
    根据邻补角的性质、角平分线的定义进行解答即可.
    【详解】
    ∵∠FOC=90°,∠1=40°,
    ∴∠3=180°-∠FOC-∠1 =180°-90°-40°=50°,
    ∴∠AOD=180°-∠3=180°-50°=130°,
    又∵OE平分∠AOD,
    ∴∠2=∠AOD=65°.
    【点睛】
    本题考查的是邻补角的概念和性质、角平分线的定义,掌握邻补角之和等于180°是解题的关键.
    6、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.
    【分析】
    首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.
    【详解】
    解:因为FGCD(已知),
    所以∠1=∠2.
    又因为∠1 = ∠3 (已知),
    所以∠2 =∠3(等量代换).
    所以(内错角相等,两直线平行),
    所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).
    故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.
    【点睛】
    本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.
    7、(1)60,75;(2)秒;(3)3或12或21或30
    【分析】
    (1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.
    (2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;
    (3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.
    【详解】
    解:(1)∵∠BOE=90°,
    ∴∠AOE=90°,
    ∵∠AOC=α=30°,
    ∴∠EOC=90°-30°=60°,
    ∠AOD=180°-30°=150°,
    ∵OF平分∠AOD,
    ∴∠FOD=∠AOD=×150°=75°;
    故答案为:60,75;
    (2)当,.
    设当射线与射线重合时至少需要t秒,
    可得,解得:;
    答:当射线与射线重合时至少需要秒;
    (3)设射线转动的时间为t秒,
    由题意得:或或或,
    解得:或12或21或30.
    答:射线转动的时间为3或12或21或30秒.
    【点睛】
    本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.
    8、(1)40°;(2)见解析;(3)70°
    【分析】
    (1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;
    (2)根据题目补充理由和相关结论即可;
    (3)类似(2)中的方法求解即可.
    【详解】
    解:(1)过点F作FN∥AB,
    ∵FN∥AB,∠FEB=130°,
    ∴∠EFN+∠FEB=180°,
    ∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,
    ∵∠EFG=90°,
    ∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,
    ∵AB∥CD,
    ∴FN∥CD,
    ∴∠FGC=∠NFG=40°.
    故答案为:40°;

    (2)如图②,过点E作EM∥FG,交CD于点M.
    ∵AB∥CD(已知)
    ∴∠BEM=∠EMC(两直线平行,内错角相等)
    又∵EM∥FG
    ∴∠FGC=∠EMC(两直线平行,同位角相等)
    ∠EFG+∠FEM=180°(两直线平行,同旁内角互补)
    即∠FGC=(∠BEM)(等量代换)
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)
    又∵∠EFG=90°
    ∴∠FEM=90°
    ∴∠FEB﹣∠FGC=90°
    故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°
    (3)过点E作EH∥FG,交CD于点H.
    ∵AB∥CD
    ∴∠BEH=∠EHC
    又∵EM∥FG
    ∴∠FGC=∠EHC
    ∠EFG+∠FEH=180°
    即∠FGC=∠BEH
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH
    又∵∠EFG=110°
    ∴∠FEH=70°
    ∴∠FEB﹣∠FGC=70°
    故答案为:70°.

    【点睛】
    本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.
    9、
    (1)证明见解析;
    (2).
    【分析】
    (1)由垂直于同一条直线的两直线平行可推出.再根据平行线的性质可得出,即得出.最后根据平行线的判定条件,即可判断;
    (2)由可推出,,即得出,.由,可推出,即得出.由,可直接推出.由此即可判断哪些角与互余.
    (1)
    证明:∵,,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)
    与互余的角有:.
    证明:∵,
    ∴,,
    ∴,.
    ∵,
    ∴,
    ∴.
    ∵,
    ∴,即.
    综上,可知与互余的角有:.
    【点睛】
    本题考查平行线的判定和性质,余角的概念.熟练掌握平行线的判定条件和性质是解答本题的关键.
    10、(1);(2);(3)
    【分析】
    (1)由折叠的性质,得到,,然后由邻补角的定义,即可求出答案;
    (2)由折叠的性质,先求出,然后求出∠FEG的度数即可;
    (3)由折叠的性质,先求出,然后求出∠FEG的度数即可.
    【详解】
    解:(1)将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处,
    ∴,,
    ∴;
    (2)根据题意,则
    ,,
    ∵,
    ∴,
    ∴,
    ∴;
    (3)根据题意,
    ,,
    ∵,
    ∴,
    ∴,
    ∴;
    【点睛】
    本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,.

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题,共27页。试卷主要包含了如图,能与构成同位角的有,下列命题正确的是等内容,欢迎下载使用。

    初中沪教版 (五四制)第十三章 相交线 平行线综合与测试练习题:

    这是一份初中沪教版 (五四制)第十三章 相交线 平行线综合与测试练习题,共28页。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后测评:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后测评,共32页。试卷主要包含了如图,直线AB∥CD,直线AB,下列说法中正确的个数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map