数学七年级下册第十三章 相交线 平行线综合与测试课时作业
展开这是一份数学七年级下册第十三章 相交线 平行线综合与测试课时作业,共28页。试卷主要包含了下列说法中正确的是,如图,在,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中正确的个数是( )
(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c
(2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c
(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c
(4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.
A.1 B.2 C.3 D.4
2、如图,直线AB经过点O,射线OA是北偏东40°方向,则射线OB的方位角是( )
A.南偏西50° B.南偏西40° C.北偏西50° D.北偏西40°
3、如图,能与构成同位角的有( )
A.4个 B.3个 C.2个 D.1个
4、下列说法中正确的是( )
A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
5、如图所示,下列条件中,不能推出AB∥CE成立的条件是( )
A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°
6、如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是( )
A.千米 B.千米 C.千米 D.千米
7、如图,能判定AB∥CD的条件是( )
A.∠2=∠B B.∠3=∠A C.∠1=∠A D.∠A=∠2
8、如图,AC⊥BC,CD⊥AB,则点C到AB的距离是线段( )的长度
A.CD B.AD C.BD D.BC
9、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:
已知:如图,b∥a,c∥a, 求证:b∥c; 证明:作直线DF交直线a、b、c分 别于点D、E、F, ∵a∥b,∴∠1=∠4,又∵a∥c, ∴∠1=∠5, ∴b∥c. |
小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是( )
A.嘉淇的推理严谨,不需要补充
B.应补充∠2=∠5
C.应补充∠3+∠5=180°
D.应补充∠4=∠5
10、下列关于画图的语句正确的是( ).
A.画直线
B.画射线
C.已知A、B、C三点,过这三点画一条直线
D.过直线AB外一点画一直线与AB平行
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、填写推理理由:
如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.
证明:∵CD∥EF,
∴∠DCB=∠2________.
∵∠1=∠2,
∴∠DCB=∠1________.
∴GD∥CB________.
∴∠3=∠ACB________.
2、如图所示,已知∠1=52°,∠2=52°,∠3=91°,那么∠4=__.
3、如图,直线mn.若,,则的大小为_____度.
4、如图,三条直线两两相交,其中同旁内角共有_______对,同位角共有______对,内错角共有_______对.
5、判断正误:
(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )
(2)如果两个角相等,那么这两个角是对顶角( )
(3)有一条公共边的两个角是邻补角( )
(4)如果两个角是邻补角,那么它们一定互补( )
(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )
三、解答题(10小题,每小题5分,共计50分)
1、如图,平面上两点C、D在直线AB的同侧,按下列要求画图并填空.
(1)画直线AC;
(2)画射线CD;
(3)画线段BD;
(4)过点D画垂线段DF⊥AB,垂足为F;
(5)点D到直线AB的距离是线段 的长.
2、如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?
3、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上.求证:.
4、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:
(1)如图a,在线段AB上找一点P,使PC+PD最小.
(2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.
(3)如图c,画线段CM∥AB.要求点M在格点上.
5、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.
(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.
(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?
(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.
6、如图,OB⊥OD,OC平分∠AOD,∠BOC=35°,求∠AOD和∠AOB的大小.
7、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.
(1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;
(2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);
(3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).
8、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A= ( ).
∴AB∥ ( ).
又∵∠1=∠2(已知),
∴AB∥CD ( ).
∴EF∥ ( ).
∴∠FDG=∠EFD ( ).
9、完成下列填空:
已知:如图,,,CA平分;
求证:.
证明:∵(已知)
∴________( )
∵(已知)
∴________( )
又∵CA平分(已知)
∴________( )
∵(已知)
∴_____________=30°( )
10、(1)用三角尺或量角器画已知直线的垂线,这样的垂线能画出几条?
(2)经过直线上一点A画的垂线,这样的垂线能画出几条?
(3)经过直线外一点B画的垂线,这样的垂线能画出几条?
-参考答案-
一、单选题
1、C
【分析】
根据平行线的性质分析判断即可;
【详解】
在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;
在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;
在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;
在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;
综上所述,正确的是(1)(3)(4);
故选C.
【点睛】
本题主要考查了平行线的性质,准确分析判断是解题的关键.
2、B
【分析】
由对顶角可知∠1=40°,故可知射线OB的方位角;
【详解】
解:由对顶角可知,∠1=40°
所以射线OB的方位角是南偏西40°
故答案为B
【点睛】
本题考查了方向角.解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.
3、B
【分析】
根据同位角的定义判断即可;
【详解】
如图,与能构成同位角的有:∠1,∠2,∠3.
故选B.
【点睛】
本题主要考查了同位角的判断,准确分析判断是解题的关键.
4、B
【分析】
根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
【详解】
解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
B.两点之间的所有连线中,线段最短,正确;
C.相等的角不一定是对顶角,故不符合题意;
D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
故选:B.
【点睛】
本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
5、B
【分析】
根据平行线的判定定理分析即可.
【详解】
A、∠A和∠ACE是AB与CE被AC所截形成的内错角,则∠A=∠ACE时,可以推出AB∥CE,不符合题意;
B、∠B和∠ACE不属于AB与CE被第三条直线所截形成的任何角,则∠B=∠ACE时,无法推出AB∥CE,符合题意;
C、∠B和∠ECD是AB与CE被BD所截形成的同位角,则∠B=∠ECD时,可以推出AB∥CE,不符合题意;
D、∠B和∠BCE AB与CE被BD所截形成的同旁内角,则∠B+∠BCE=180°时,可以推出AB∥CE,不符合题意;
故选:B.
【点睛】
本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.
6、B
【分析】
根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.
【详解】
解:根据两直线平行,内错角相等,可得∠ABG=48°,
∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,
∴AB⊥BC,
∴A地到公路BC的距离是AB=8千米,
故选B.
【点睛】
此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
7、D
【分析】
根据平行线的判定定理,找出正确选项即可.
【详解】
根据内错角相等,两直线平行,
∵∠A=∠2,
∴AB∥CD,
故选:D.
【点睛】
本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.
8、A
【分析】
根据和点到直线的距离的定义即可得出答案.
【详解】
解:,
点到的距离是线段的长度,
故选:A.
【点睛】
本题考查了点到直线的距离,理解定义是解题关键.
9、D
【分析】
根据平行线的性质与判定、平行公理及推论解决此题.
【详解】
解:证明:作直线DF交直线a、b、c分别于点D、E、F,
∵a∥b,
∴∠1=∠4,
又∵a∥c,
∴∠1=∠5,
∴∠4=∠5.
∴b∥c.
∴应补充∠4=∠5.
故选:D.
【点睛】
本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.
10、D
【分析】
直接利用直线、射线的定义分析得出答案.
【详解】
解:A、画直线AB=8cm,直线没有长度,故此选项错误;
B、画射线OA=8cm,射线没有长度,故此选项错误;
C、已知A、B、C三点,过这三点画一条直线或2条、三条直线,故此选项错误;
D、过直线AB外一点画一直线与AB平行,正确.
故选:D.
【点睛】
此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.
二、填空题
1、两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等
【分析】
根据平行线的性质得出,求出,根据平行线的判定得出,利用平行线的性质即可得出.
【详解】
证明:
∵,
∴(两直线平行,同位角相等)
∵,
∴.(等量代换)
∴(内错角相等,两直线平行).
∴(两直线平行,同位角相等).
故答案为:①两直线平行,同位角相等;②等量代换;③内错角相等,两直线平行;④两直线平行,同位角相等.
【点睛】
题目主要考查平行线的判定定理及性质,理解题意,结合图形,综合运用判定的性质定理是解题关键.
2、
【分析】
根据同位角相等判定两直线平行,再利用平行线性质可得∠3=∠5=91°,再利用平角性质计算即可.
【详解】
解:如图,∵∠1=∠2=52°,
∴a∥b,
∴∠3=∠5=91°,
∵∠5+∠4=180°,
∴∠4=180°﹣∠5=89°.
故答案为:89°.
【点睛】
此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.
3、70
【分析】
如图(见解析),过点作,再根据平行线的性质可得,然后根据角的和差即可得.
【详解】
解:如图,过点作,
,
,
,
,
,
故答案为:70.
【点睛】
本题考查了平行线的性质与推论,熟练掌握平行线的性质是解题关键.
4、6 12 6
【分析】
根据同位角、同旁内角和内错角的定义判断即可;
【详解】
如图所示:
同位角有:与;与;与,与;与;与;与;与;与;与;与;和,共有12对;
同旁内角有:与;与;与;与;与;与,共有6对;
内错角有:与;与;与;与;与;与,共有6对;
故答案是:6;12;6.
【点睛】
本题主要考查了同位角、内错角、同旁内角的判断,准确分析判断是解题的关键.
5、(1)×;(2)×;(3)×;(4)√;(5)×
【分析】
根据对顶角与邻补角的定义与性质分析判断即可求解.
【详解】
(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
(2)如果两个角相等,那么这两个角不一定是对顶角,错误;
(3)有一条公共边的两个角不一定是邻补角,错误;
(4)如果两个角是邻补角,那么它们一定互补,正确;
(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;
故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.
【点睛】
本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.
三、解答题
1、(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)DF
【分析】
(1)连接AC并向两端延长即可;
(2)连接CD并延长CD即可;
(3)连接BD即可;
(4)过D作线段DF⊥AB,垂足为F;
(5)根据垂线段的长度是点到直线的距离解答即可.
【详解】
解:(1)直线AC如图所示;
(2)射线CD如图所示;
(3)线段BD如图所示;
(4)垂线段DF如图所示;
(5)垂线段DF的长是点D到直线AB的距离,
故答案为:DF.
【点睛】
本题考查画直线、射线、线段、垂线段、点到直线的距离,熟练掌握基本作图方法,理解点到直线的距离的定义是解答的关键.
2、∠1和∠2,∠3和∠4都不是对顶角,∠1与∠5,∠3与∠6也都不是邻补角
【分析】
根据对顶角和邻补角的定义求解即可.
【详解】
解:根据对顶角的定义可得:∠1和∠2,∠3和∠4都不是对顶角;
根据邻补角的定义可得,∠1与∠5,∠3与∠6也都不是邻补角.
【点睛】
此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角.两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。
3、见解析
【分析】
由AB∥CD∥EF可得,,,即可证明.
【详解】
证明:∵AB∥CD(已知)
∴(两直线平行,内错角相等)
又 ∵CD∥EF(已知)
∴(两直线平行,内错角相等)
∵(已知)
∴(等式性质)
【点睛】
本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.
4、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;
(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;
(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.
【详解】
解:(1)如图a,点P即为所求;
(2)如图b,点Q和线段CQ即为所求;
(3)如图c,线段CM即为所求.
【点睛】
本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.
5、(1)60,75;(2)秒;(3)3或12或21或30
【分析】
(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.
(2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;
(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.
【详解】
解:(1)∵∠BOE=90°,
∴∠AOE=90°,
∵∠AOC=α=30°,
∴∠EOC=90°-30°=60°,
∠AOD=180°-30°=150°,
∵OF平分∠AOD,
∴∠FOD=∠AOD=×150°=75°;
故答案为:60,75;
(2)当,.
设当射线与射线重合时至少需要t秒,
可得,解得:;
答:当射线与射线重合时至少需要秒;
(3)设射线转动的时间为t秒,
由题意得:或或或,
解得:或12或21或30.
答:射线转动的时间为3或12或21或30秒.
【点睛】
本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.
6、∠AOD=110°,∠AOB=20°
【分析】
根据OB⊥OD,先可求出∠COD,再根据角平分线的性质求出∠AOD,利用角度的关系即可求出∠AOB.
【详解】
解:∵OB⊥OD
∴∠BOD=90°
∵∠BOC=35°,
∴∠COD=90°-∠BOC=55°
∵OC平分∠AOD,
∴∠AOD=2∠COD=110°
∴∠AOB=∠AOD-∠BOD=110°-90°=20°.
【点睛】
此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义.
7、(1);(2);(3)
【分析】
(1)由折叠的性质,得到,,然后由邻补角的定义,即可求出答案;
(2)由折叠的性质,先求出,然后求出∠FEG的度数即可;
(3)由折叠的性质,先求出,然后求出∠FEG的度数即可.
【详解】
解:(1)将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处,
∴,,
∴;
(2)根据题意,则
,,
∵,
∴,
∴,
∴;
(3)根据题意,
,,
∵,
∴,
∴,
∴;
【点睛】
本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,.
8、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
【分析】
利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
【详解】
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A=∠FEC(等量代换),
∴AB∥EF(同位角相等,两直线平行),
又∵∠1=∠2(已知),
∴AB∥CD(内错角相等,两直线平行),
∴EF∥CD(平行于同一条直线的两直线互相平行),
∴∠FDG=∠EFD(两直线平行,内错角相等),
故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
【点睛】
本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
9、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等
【分析】
由AB与CD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.
【详解】
证明:∵AB∥CD,(已知)
∴∠B+∠BCD=180°,(两直线平行同旁内角互补)
∵∠B=120°(已知),
∴∠BCD=60°.
又CA平分∠BCD(已知),
∴∠2=30°,(角平分线定义).
∵AB∥CD(已知),
∴∠1=∠2=30°.(两直线平行内错角相等).
故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.
【点睛】
此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.
10、(1)能画无数条;(2)能画一条;(3)能画一条
【分析】
用三角板的一条直角边与已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和点A(或点B)重合,过点A(或点B)沿直角边向已知直线画直线即可,在两线相交处标出垂足(直角符号),据此即可解答.
【详解】
解:(1)根据题意得:画已知直线的垂线,这样的垂线能画出无数条;
(2)根据题意得:经过直线上一点A画的垂线,这样的垂线能画出一条;
(3)根据题意得:经过直线外一点B画的垂线,这样的垂线能画出一条.
【点睛】
本题主要考查了画已知直线的垂线,熟练掌握同一平面内,过已知点有且只有一条直线与已知直线垂直是解题的关键.
相关试卷
这是一份2020-2021学年第十三章 相交线 平行线综合与测试综合训练题,共31页。试卷主要包含了如图,∠1与∠2是同位角的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共28页。试卷主要包含了如图,∠1与∠2是同位角的是,直线,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共31页。试卷主要包含了如图,不能推出a∥b的条件是,如图所示,下列说法错误的是,下列语句中等内容,欢迎下载使用。