搜索
    上传资料 赚现金
    英语朗读宝

    2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(无超纲)

    2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(无超纲)第1页
    2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(无超纲)第2页
    2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试题(无超纲)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    七年级下册第十三章 相交线 平行线综合与测试一课一练

    展开

    这是一份七年级下册第十三章 相交线 平行线综合与测试一课一练,共29页。试卷主要包含了在下列各题中,属于尺规作图的是,下列说法中正确的有等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列说法中,正确的是( )
    A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离
    B.互相垂直的两条直线不一定相交
    C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm
    D.过一点有且只有一条直线垂直于已知直线
    2、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )
    A.139°B.141°C.131°D.129°
    3、如图,能判定AB∥CD的条件是( )
    A.∠2=∠BB.∠3=∠AC.∠1=∠AD.∠A=∠2
    4、如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是( )
    A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠E
    C.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°
    5、在下列各题中,属于尺规作图的是( )
    A.用直尺画一工件边缘的垂线
    B.用直尺和三角板画平行线
    C.利用三角板画的角
    D.用圆规在已知直线上截取一条线段等于已知线段
    6、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:
    小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是( )
    A.嘉淇的推理严谨,不需要补充
    B.应补充∠2=∠5
    C.应补充∠3+∠5=180°
    D.应补充∠4=∠5
    7、点P是直线外一点,为直线上三点,,则点P到直线的距离是( )
    A.2cmB.小于2cmC.不大于2cmD.4cm
    8、如图,∠1=∠2,∠3=25°,则∠4等于( )
    A.165°B.155°C.145°D.135°
    9、下列说法中正确的有( )
    ①一条直线的平行线只有一条.
    ②过一点与已知直线平行的直线只有一条.
    ③因为a∥b,c∥d,所以a∥d.
    ④经过直线外一点有且只有一条直线与已知直线平行.
    A.1个B.2个C.3个D.4个
    10、如图,矩形纸片ABCD沿EF折叠后,∠FEC=30°,则∠AGE的度数为( )
    A.30°B.60°C.80°D.不能确定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、张雷同学从A地出发沿北偏东60°的方向行驶到B地,再由B地沿南偏西35°的方向行驶到C地,则∠ABC=____度.
    2、指出图中各对角的位置关系:
    (1)∠C和∠D是_____角;
    (2)∠B和∠GEF是____角;
    (3)∠A和∠D是____角;
    (4)∠AGE和∠BGE是____角;
    (5)∠CFD和∠AFB是____角.

    3、如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.
    4、如图,将一块直角三角板与一张两边平行的纸条按照如图所示的方式放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2=∠3;④∠4+∠5=180°.其中正确的是________.(填序号)
    5、如图,直线AB和CD交于O点,OD平分∠BOF,OE ⊥CD于点O,∠AOC=40,则∠EOF=_______.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°,
    (1)请判断AB与CD的位置关系并说明理由;
    (2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
    (3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.
    2、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上.求证:.
    3、如图,OA⊥OB于点O,∠AOD:∠BOD=7:2,点D、O、E在同一条直线上,OC平分∠BOE,求∠COD的度数.
    4、已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠求证:AB∥CD.
    证明:∵AD∥BC(已知),
    ∴∠3= ( ).
    ∵∠3=∠4(已知),
    ∴∠4= ( ).
    ∵∠1=∠2(已知),
    ∴∠1+∠CAF=∠2+∠CAF( ).
    即∠BAF= .
    ∴∠4=∠BAF.( ).
    ∴AB∥CD( ).
    4.如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.
    (1)求∠BOC的度数;
    (2)试说明OE平分∠AOC.
    5、如图,现有以下3个论断:①ABCD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.
    (1)你构造的是哪几个命题?
    (2)请选择其中一个真命题加以证明.
    6、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.
    7、如果把图看成是直线AB,EF被直线CD所截,那么
    (1)∠1与∠2是一对什么角?
    (2)∠3与∠4呢?∠2与∠4呢?
    8、如图,∠ENC+∠CMG=180°,AB∥CD.
    (1)求证:∠2=∠3.
    (2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.
    9、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:
    (1)如图a,在线段AB上找一点P,使PC+PD最小.
    (2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.
    (3)如图c,画线段CM∥AB.要求点M在格点上.
    10、如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF,∠AOD=74°,求∠COF的度数.
    -参考答案-
    一、单选题
    1、C
    【分析】
    根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.
    【详解】
    从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;
    在同一平面内,互相垂直的两条直线一定相交,即选项B错误;
    直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;
    在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;
    故选:C.
    【点睛】
    本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.
    2、A
    【分析】
    如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..
    【详解】
    解:如图,∵AECF,
    ∴∠A=∠CGB=41°,
    ∵ABCD,
    ∴∠C=180°-∠CGB=139°.
    故选:A
    【点睛】
    本题考查了平行线的性质,熟知平行线的性质是解题关键.
    3、D
    【分析】
    根据平行线的判定定理,找出正确选项即可.
    【详解】
    根据内错角相等,两直线平行,
    ∵∠A=∠2,
    ∴AB∥CD,
    故选:D.
    【点睛】
    本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.
    4、C
    【分析】
    如图,过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据AB∥EF可得CG∥DH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.
    【详解】
    如图,过点C作CG∥AB,过点D作DH∥EF,
    ∴∠A=∠ACG,∠EDH=180°﹣∠E,
    ∵AB∥EF,
    ∴CG∥DH,
    ∴∠CDH=∠DCG,
    ∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),
    ∴∠A﹣∠ACD+∠CDE+∠E=180°.
    故选:C.
    【点睛】
    本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.
    5、D
    【分析】
    根据尺规作图的定义:用没有刻度的直尺和圆规作图,只使用圆规和直尺来解决平面几何作图,进行逐一判断即可.
    【详解】
    解:A、用直尺画一工件边缘的垂线,这里没有用到圆规,故此选项不符合题意;
    B、用直尺和三角板画平行线,这里没有用到圆规,故此选项不符合题意;
    C、利用三角板画45°的角,这里没有用到圆规,故此选项不符合题意;
    D、用圆规在已知直线上截取一条线段等于已知线段,是尺规作图,故此选项符合题意;
    故选D.
    【点睛】
    本题主要考查了尺规作图的定义,解题的关键在于熟知定义.
    6、D
    【分析】
    根据平行线的性质与判定、平行公理及推论解决此题.
    【详解】
    解:证明:作直线DF交直线a、b、c分别于点D、E、F,
    ∵a∥b,
    ∴∠1=∠4,
    又∵a∥c,
    ∴∠1=∠5,
    ∴∠4=∠5.
    ∴b∥c.
    ∴应补充∠4=∠5.
    故选:D.
    【点睛】
    本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.
    7、C
    【分析】
    根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.
    【详解】
    解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,
    ∴点到直线的距离不大于,
    故选:C.
    【点睛】
    本题考查了垂线段最短的性质,熟记性质是解题的关键.
    8、B
    【分析】
    设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
    【详解】
    解:设∠4的补角为,如下图所示:
    ∠1=∠2,



    故选:B.
    【点睛】
    本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
    9、A
    【分析】
    根据平行线的性质,平行线的判定判断即可.
    【详解】
    ∵一条直线的平行线有无数条,
    ∴①的说法不正确;
    ∵经过直线外一点有且只有一条直线与已知直线平行,
    ∴②的说法不正确,④的说法正确;
    ∵a∥b,c∥d,无法判定a∥d
    ∴③的说法不正确.
    只有一个是正确的,
    故选A.
    【点睛】
    本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.
    10、B
    【分析】
    由翻折变换的性质求出∠GEF的度数,再利用平行线的性质可得出结论.
    【详解】
    解:∵AD∥BC,∠FEC=30°,
    ∴∠AGE=∠GEC,
    由翻折变换的性质可知∠GEF=∠FEC=30°,
    ∴∠AGE=∠GEC=∠GEF+∠FEC=30°+30°=60°.
    故选:B.
    【点睛】
    本题考查了平行线的性质以及折叠的性质,根据平行线的性质找到相等(或互补)的角是关键.
    二、填空题
    1、25
    【分析】
    根据题意作出图形即可判断求解.
    【详解】
    解:如图所示,
    ∵AD∥BE,∠1=60°,
    ∴∠ABE=∠DAB=60°,
    又∵∠CBE=35°,
    ∴∠ABC=60°﹣35°=25°.
    故答案为:25.
    【点睛】
    此题主要考查方位角的计算,涉及了平行线的有关性质,解题的关键是根据题意作出图形,即可进行求解.
    2、同旁内 同位 内错 邻补 对顶
    【分析】
    根据同位角,同旁内角,内错角,邻补角,对顶角的定义进行逐一判断即可.
    【详解】
    解:(1)∠C和∠D是同旁内角;
    (2)∠B和∠GEF是同位角;
    (3)∠A和∠D是内错角;
    (4)∠AGE和∠BGE是邻补角;
    (5)∠CFD和∠AFB是对顶角;
    故答案为:(1)同旁内 (2)同位 (3)内错 (4)邻补(5)对顶.
    【点睛】
    本题主要考查了同位角,同旁内角,内错角,邻补角,对顶角的定义,解题的关键在于能够熟知定义.
    3、
    【分析】
    延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;
    【详解】
    延长AB,交两平行线与C、D,
    ∵直线l1∥l2,∠A=125°,∠B=85°,
    ∴,,,
    ∴,
    ∴,
    又∵∠1比∠2大4°,
    ∴,
    ∴,
    ∴;
    故答案是.
    【点睛】
    本题主要考查了平行线的性质应用,准确计算是解题的关键.
    4、①②④
    【分析】
    根据平行线的性质,直角三角板的性质对各小题进行验证即可得解.
    【详解】
    解:∵纸条的两边互相平行,
    ∴∠1=∠2,∠3=∠4,∠4+∠5=180°,故①,②,④正确;
    ∵三角板是直角三角板,
    ∴∠2+∠4=180°-90°=90°,
    ∵∠3=∠4,
    ∴∠2+∠3=90°,故③不正确.
    综上所述,正确的是①②④.
    故答案为:①②④.
    【点睛】
    本题考查了平行线的性质,直角三角板的性质,熟记性质与概念并准确识图是解题的关键.
    5、130°
    【分析】
    根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.
    【详解】
    解:∵AB、CD相交于点O,
    ∴∠BOD=∠AOC=40°.
    ∵OD平分∠BOF,
    ∴∠DOF=∠BOD=40°,
    ∵OE⊥CD,
    ∴∠EOD=90°,
    ∴∠EOF=∠EOD+∠DOF=130°.
    故答案为130°.
    【点睛】
    本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.
    三、解答题
    1、(1)平行,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.
    【分析】
    (1)先根据CE平分∠ACD,AE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;
    (2)如图,过E作EF∥AB,由AB//CD可得EF∥AB∥CD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
    (3)如图,过点C作CM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据AB∥CD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC.
    【详解】
    (1)∵CE平分∠ACD,AE平分∠BAC,
    ∴∠BAC=2∠EAC,∠ACD=2∠ACE,
    ∵∠EAC+∠ACE=90°,
    ∴∠BAC+∠ACD=180°,
    ∴AB∥CD
    (2)∠BAE+∠MCD=90°;理由如下:
    如图,过E作EF∥AB,
    ∵AB∥CD,
    ∴EF∥AB∥CD,
    ∴∠BAE=∠AEF,∠FEC=∠DCE,
    ∵∠AEC=∠AEF+∠FEC=90°,
    ∴∠BAE+∠ECD=90°,
    ∵∠MCE=∠ECD=∠MCD,
    ∴∠BAE+∠MCD=90°.
    (3)如图,过点C作CM//PQ,
    ∴∠PQC=∠MCN,∠QPC=∠PCM,
    ∵AB∥CD,
    ∴∠BAC+∠ACD=180°,
    ∵∠PCQ+∠PCM+∠MCN=180°,
    ∴∠QPC+∠PQC+∠PCQ=180°,
    ∴∠BAC=∠PQC+∠QPC.
    【点睛】
    本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
    2、见解析
    【分析】
    由AB∥CD∥EF可得,,,即可证明.
    【详解】
    证明:∵AB∥CD(已知)
    ∴(两直线平行,内错角相等)
    又 ∵CD∥EF(已知)
    ∴(两直线平行,内错角相等)
    ∵(已知)
    ∴(等式性质)
    【点睛】
    本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.
    3、100°
    【分析】
    由垂直的定义结合两角的比值可求解∠BOD的度数,即可求得∠BOE的度数,再利用角平分线的定义可求得∠BOC的度数,进而可求解∠COD的度数.
    【详解】
    解:∵OA⊥OB,
    ∴∠AOB=90°,
    ∵∠AOD:∠BOD=7:2,
    ∴∠BOD=∠AOB=20°,
    ∴∠BOE=180°﹣∠BOD=160°.
    ∵OC平分∠BOE,
    ∴∠BOC=∠BOE=80°,
    ∴∠COD=∠BOC+∠BOD=80°+20°=100°.
    【点睛】
    本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD的度数是解题的关键.
    4、
    (1)∠BOC=60°
    (2)见解析
    【分析】
    (1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;
    (2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.
    【详解】
    (1)∵∠AOB=∠BOC+∠AOC=180°,
    又∠BOC:∠AOC=1:2,
    ∴∠AOC=2∠BOC,
    ∴∠BOC+2∠BOC=180°,
    ∴∠BOC=60°;
    (2)∵OD平分∠BOC,
    ∴∠BOD=∠DOC,
    ∵∠DOC+∠COE=90°,∠AOB是平角,
    ∴∠AOE+∠BOD=90°,
    ∴∠AOE=∠COE
    即OE平分∠AOC.
    【点睛】
    本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.
    5、(1)由①②得③,由①③得②,由②③得①;(2)由①②得③,见解析
    【分析】
    (1)分别以其中2句话为条件,第三句话为结论可写出3个命题;
    (2)根据平行线的判定与性质对3个命题分别进行证明,判断它们的真假.
    【详解】
    (1)由①②得③;由①③得②;由②③得①.
    (2)证明:由①②得③;
    ∵ABCD;
    ∴∠EAB=∠C
    又∵∠B=∠C;
    ∴∠EAB=∠B
    ∴CEBF;
    ∴∠E=∠F.
    【点睛】
    本题考查了命题与定理,平行线的判定与性质,掌握平行线的判定定理与性质定理是解题的关键.
    6、60°
    【分析】
    由CD⊥AB,FE⊥AB,则,则∠2=∠4,从而证得,得∠B=∠ADG,则答案可解.
    【详解】
    解:CD⊥AB于D,FE⊥AB于E,
    ∴,
    ∴∠2=∠4,
    又∵∠1=∠2,
    ∴∠1=∠4,
    ∴,
    ∴.
    【点睛】
    本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.
    7、(1)∠1与∠2是一对同位角;(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角
    【分析】
    同位角:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截直线之间的两角,叫做同旁内角;由以上概念进行判断即可.
    【详解】
    解:直线AB,EF被直线CD所截,
    (1)∠1与∠2是一对同位角;
    (2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角.
    【点睛】
    本题考查同位角、内错角以及同旁内角的识别,掌握这几种角的基本定义是解题关键.
    8、(1)见解析;(2)34°
    【分析】
    (1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;
    (2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.
    【详解】
    (1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,
    ∴∠ENC+∠FMN=180°,
    ∴FG∥ED,
    ∴∠2=∠D,
    ∵AB∥CD,
    ∴∠3=∠D,
    ∴∠2=∠3;
    (2)解:∵AB∥CD,
    ∴∠A+∠ACD=180°,
    ∵∠A=∠1+70°,∠ACB=42°,
    ∴∠1+70°+∠1+42°=180°,
    ∴∠1=34°,
    ∵AB∥CD,
    ∴∠B=∠1=34°.
    故答案为:34°.
    【点睛】
    本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.
    9、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;
    (2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;
    (3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.
    【详解】
    解:(1)如图a,点P即为所求;
    (2)如图b,点Q和线段CQ即为所求;
    (3)如图c,线段CM即为所求.
    【点睛】
    本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.
    10、53°
    【分析】
    首先根据对顶角相等可得∠BOC=74°,再根据角平分线的性质可得∠COE=∠COB=37°,再利用余角定义可计算出∠COF的度数.
    【详解】
    解:∵∠AOD=74°,
    ∴∠BOC=74°,
    ∵OE是∠COB的平分线,
    ∴∠COE=∠COB=37°,
    ∵OE⊥OF,
    ∴∠EOF=90°,
    ∴∠COF=90°-37°=53°.
    【点睛】
    本题考查了角平分线的性质、余角、对顶角的性质,关键是掌握对顶角相等,角平分线把角分成相等的两部分.
    已知:如图,b∥a,c∥a,
    求证:b∥c;
    证明:作直线DF交直线a、b、c分
    别于点D、E、F,
    ∵a∥b,∴∠1=∠4,又∵a∥c,
    ∴∠1=∠5,
    ∴b∥c.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂检测题,共29页。试卷主要包含了下列语句中等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试一课一练:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试一课一练,共29页。试卷主要包含了如图,不能推出a∥b的条件是,下列语句中等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共30页。试卷主要包含了下列说法等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map