终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步训练试题

    立即下载
    加入资料篮
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步训练试题第1页
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步训练试题第2页
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步训练试题第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题,共33页。试卷主要包含了如图,直线AB∥CD,直线AB,如图所示,直线l1∥l2,点A等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线同步训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,∠1=∠2,∠3=25°,则∠4等于( )

    A.165° B.155° C.145° D.135°
    2、如果两个角的一边在同一直线上,另一边互相平行,则这两个角( )
    A.相等 B.互补 C.互余 D.相等或互补
    3、下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是( )
    A.① B.②和③ C.④ D.①和④
    4、如图,已知直线,相交于O,平分,,则的度数是( )

    A. B. C. D.
    5、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )

    A.80° B.90° C.100° D.110°
    6、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )

    A.30° B.40° C.50° D.60°
    7、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )

    A.S1>S2 B.S1=S2 C.S1<S2 D.不确定
    8、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )

    A.100° B.140° C.160° D.105°
    9、如图,矩形纸片ABCD沿EF折叠后,∠FEC=30°,则∠AGE的度数为( )

    A.30° B.60° C.80° D.不能确定
    10、如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C'、D'.若∠DEF=α,用含α的式子可以将∠C'FG表示为(  )

    A.2α B.90°+α C.180°﹣α D.180°﹣2α
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图①,已知,,的交点为,现作如下操作:第一次操作,分别作和的平分线,交点为;第二次操作,分别作和的平分线,交点为;第三次操作,分别作和的平分线,交点为……第次操作,分别作和的平分线,交点为.如图②,若,则的度数是__________.

    2、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____

    3、如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=70°,则∠BDF的度数为____.

    4、两条射线或线段平行,是指_______________________.
    5、如图,P是直线a外一点,点A,B,C,D为直线a上的点,PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是______

    三、解答题(10小题,每小题5分,共计50分)
    1、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)

    (1)当t=3时,求∠AOB的度数;
    (2)在运动过程中,当∠AOB达到60°时,求t的值;
    (3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.
    2、如图,107国道上有一个出口M,想在附近公路旁建一个加油站,欲使通道最短,应沿怎样的线路施工?

    3、已知AB∥CD,点是AB,CD之间的一点.
    (1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;
    以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):
    解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).
    ∵AB∥CD(已知),
    ∴PE∥CD(    ),
    ∴∠BAE=∠1,∠DCE=∠2(    ),
    ∴∠BAE+∠DCE=   +   (等式的性质).
    即∠AEC,∠BAE,∠DCE之间的数量关系是    .
    (2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.
    ①若∠AEC=74°,求∠AFC的大小;
    ②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.

    4、任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.
    5、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.

    6、推理填空:如图,直线,并且被直线所截,交和于点,平分,平分,使说明.

    解:∵,
    ∴( )
    ∵平分,平分.
    ∴, ( )

    ∴( )

    ∴( )
    7、小明同学遇到这样一个问题:
    如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
    求证:∠BED=∠B+∠D.
    小亮帮助小明给出了该问的证明.
    证明:
    过点E作EF∥AB
    则有∠BEF=∠B
    ∵AB∥CD
    ∴EF∥CD
    ∴∠FED=∠D
    ∴∠BED=∠BEF+∠FED=∠B+∠D
    请你参考小亮的思考问题的方法,解决问题:
    (1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.
    (2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.

    8、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.

    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=  (   ).
    ∴AB∥  (   ).
    又∵∠1=∠2(已知),
    ∴AB∥CD (   ).
    ∴EF∥   (   ).
    ∴∠FDG=∠EFD (   ).
    9、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.

    10、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点
    (1)若∠MAB=∠QCB=20°,则B的度数为 度.
    (2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.
    ①依题意在图1中补全图形;
    ②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);
    (3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系


    -参考答案-
    一、单选题
    1、B
    【分析】
    设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
    【详解】
    解:设∠4的补角为,如下图所示:

    ∠1=∠2,



    故选:B.
    【点睛】
    本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
    2、D
    【分析】
    根据平行线的性质,结合图形解答即可.
    【详解】
    如图,当AE∥BD时,∠EAB与∠DBC符合题意,
    ∴∠EAB=∠DBC;

    如图,当AE∥BD时,∠EAF与∠DBC符合题意,
    ∵∠EAB+∠EAF=180°,∠EAB=∠DBC,
    ∴∠DBC +∠EAF=180°,
    故选D.
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质,灵活运用属性结合是解题的关键.
    3、A
    【分析】
    利用平行线的性质逐一判断即可.
    【详解】
    ①是平行线的性质,故符合题意;
    ②是平行线的判定,故不符合题意;
    ③是平行线的判定,故不符合题意;
    ④是平行线的判定,故不符合题意;
    故选:A.
    【点睛】
    本题主要考查平行线的性质,掌握平行线的性质和判定的区别是关键.
    4、C
    【分析】
    先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
    【详解】
    解:∵OA平分∠EOC,∠EOC=100°,
    ∴∠AOC=∠EOC=50°,
    ∴∠BOC=180°﹣∠AOC=130°.
    故选:C.
    【点睛】
    本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
    5、D
    【分析】
    直接利用对顶角以及平行线的性质分析得出答案.
    【详解】
    解:

    ∵∠1=70°,
    ∴∠1=∠3=70°,
    ∵ABDC,
    ∴∠2+∠3=180°,
    ∴∠2=180°−70°=110°.
    故答案为:D.
    【点睛】
    此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
    6、C
    【分析】
    由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
    【详解】
    解:由题意,
    ∵∠BMN与∠AME是对顶角,
    ∴∠BMN=∠AME=130°,
    ∵AB∥CD,
    ∴∠BMN+∠DNM=180°,
    ∴∠DNM=50°;
    故选:C.
    【点睛】
    本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
    7、B
    【分析】
    由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.
    【详解】
    解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.
    故选:B.
    【点睛】
    本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.
    8、B
    【分析】
    根据方位角的含义先求解 再利用角的和差关系可得答案.
    【详解】
    解:如图,标注字母,

    射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,



    故选B
    【点睛】
    本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.
    9、B
    【分析】
    由翻折变换的性质求出∠GEF的度数,再利用平行线的性质可得出结论.
    【详解】
    解:∵AD∥BC,∠FEC=30°,
    ∴∠AGE=∠GEC,
    由翻折变换的性质可知∠GEF=∠FEC=30°,
    ∴∠AGE=∠GEC=∠GEF+∠FEC=30°+30°=60°.
    故选:B.
    【点睛】
    本题考查了平行线的性质以及折叠的性质,根据平行线的性质找到相等(或互补)的角是关键.
    10、D
    【分析】
    由平行线的性质得,,由折叠的性质得,计算即可得出答案.
    【详解】
    ∵四边形ABCD是矩形,
    ∴,
    ∴,,
    ∵长方形纸带沿EF折叠,
    ∴,
    ∴.
    故选:D.
    【点睛】
    本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键.
    二、填空题
    1、
    【分析】
    先过作,根据,得出,再根据平行线的性质,得出,,进而得到;先根据和的平分线交点为,运用图①的结论,得出;同理可得;根据和的平分线,交点为,得出;据此得到规律,最后求得的度数即可.
    【详解】
    解:如图①,过作,



    ,,


    由此可得:
    如图②,和的平分线交点为,



    和的平分线交点为,




    和的平分线,交点为,





    以此类推,,
    ∴,
    当时,.
    故答案为:.

    【点睛】
    本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
    2、
    【分析】
    先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.
    【详解】
    解:

    ∠EFG+∠EGD=150°,
    ∠EGD=
    折叠







    故答案为:.
    【点睛】
    本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.
    3、40°
    【分析】
    利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.
    【详解】
    解:∵DE∥BC,
    ∴∠ADE=∠B=70°,
    由折叠的性质可得∠ADE=∠EDF=70°,
    ∴∠BDF=180°﹣∠ADE-∠EDF=40°,
    故答案为:40°.
    【点睛】
    本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.
    4、射线或线段所在的直线平行
    【分析】
    根据直线、线段、射线的关系以及平行线的知识进行解答.
    【详解】
    解:两条射线或线段平行,是指:射线或线段所在的直线平行,
    故答案为:射线或线段所在的直线平行.
    【点睛】
    本题考查了直线、线段、射线以及平行线的问题,本题是对基础知识的考查,记忆时一定要注意公理或定义、性质成立的前提条件.
    5、0<l≤2
    【分析】
    根据直线外一点与直线上各点连线的所有线段中,垂线段最短解答即可.
    【详解】
    解:∵点P为直线外一点,点A、B、C、D直线a上不同的点,
    ∵直线外一点与直线上各点连线的所有线段中,垂线段最短
    ∴点P到直线a的距离l小于等于2,
    故答案为:0<l≤2.
    【点睛】
    本题考查点到直线的距离、垂线段最短,熟知直线外一点与直线上各点连线的所有线段中,垂线段最短是解答的关键.
    三、解答题
    1、(1)150°;(2)12或24;(3)存在,9秒、27秒
    【分析】
    (1)根据∠AOB=180°−∠AOM−∠BON计算即可.
    (2)先求解重合时,再分两种情况讨论:当0≤t≤18时;当18≤t≤30时;再构建方程求解即可.
    (3)分两种情形,当0≤t≤18时;当18≤t≤30时;分别构建方程求解即可.
    【详解】
    解:(1)当t=3时,∠AOB=180°−4°×3−6°×3=150°.
    (2)当重合时,
    解得:
    当0≤t≤18时:


    4t+6t=120
    解得:
    当18≤t≤30时:则
    4t+6t=180+60,
    解得 t=24,
    答:当∠AOB达到60°时,t的值为6或24秒.
    (3) 当0≤t≤18时,由

    180−4t−6t=90,
    解得t=9,
    当18≤t≤30时,同理可得:
    4t+6t=180+90
    解得t=27.
    所以大于的答案不予讨论,
    答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9秒、27秒.
    【点睛】
    本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.
    2、作图见解析
    【分析】
    根据垂线段最短作图即可;
    【详解】
    解:如图,过点M作MN⊥,垂足为N,欲使通道最短,应沿线路MN施工.

    【点睛】
    本题主要考查了垂线段最短的应用,尺规作图,准确分析作图是解题的关键.
    3、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE;(2)①37°;②52°
    【分析】
    (1)结合图形利用平行线的性质填空即可;
    (2)①过F作FG∥AB,由(1)得:∠AEC=∠BAE+∠DCE,根据AB∥CD,FG∥AB,CD∥FG,得出∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,根据AF平分∠BAE,CF平分∠DCE,可得∠BAF=∠BAE,∠DCF=∠DCE,根据角的和差∠AFC=∠BAF+∠DCF=∠AEC即可;
    ②由①得:∠AEC=2∠AFC,可求∠AFC=42°,∠AEC=82°,根据CG⊥AF,求出∠GCF=90-∠AFC=48°,根据角平分线计算得出∠GCF=3∠DCF,求出∠DCF=16°即可.
    【详解】
    解:(1)平行于同一条直线的两条直线平行,
    两直线平行,内错角相等,
    ∠1,∠2,
    ∠AEC=∠BAE+∠DCE,
    故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,
    (2)①过F作FG∥AB,
    由(1)得:∠AEC=∠BAE+∠DCE,
    ∵AB∥CD,FG∥AB,
    ∴CD∥FG,
    ∴∠BAF=∠AFG,∠DCF=∠GFC,
    ∴∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,
    ∵AF平分∠BAE,CF平分∠DCE,
    ∴∠BAF=∠BAE,∠DCF=∠DCE,
    ∴∠AFC=∠BAF+∠DCF,
    =∠BAE+∠DCE,
    =(∠BAE+∠DCE),
    =∠AEC,
    =×74°,
    =37°;

    ②由①得:∠AEC=2∠AFC,
    ∵∠AEC+∠AFC=126°,
    ∴2∠AFC+∠AFC=126°
    ∴3∠AFC=126°,
    ∴∠AFC=42°,∠AEC=84°,
    ∵CG⊥AF,
    ∴∠CGF=90°,
    ∴∠GCF=90-∠AFC=48°,
    ∵CE平分∠DCG,
    ∴∠GCE=∠ECD,
    ∵CF平分∠DCE,
    ∴∠DCE=2∠DCF=2∠ECF,
    ∴∠GCF=3∠DCF,
    ∴∠DCF=16°,
    ∴∠DCE=32°,
    ∴∠BAE=∠AEC﹣∠DCE=52°.

    【点睛】
    本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键.
    4、共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,具体分类见解析
    【分析】
    根据题意画出图形,然后结合题意可进行求解.
    【详解】
    解:如图,

    由图可知两条相交的直线,两两相配共组成6对角,
    位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,
    这6对角中有:4对邻补角(即为∠AOD与∠AOC,∠AOD与∠BOD,∠BOD与∠BOC,∠BOC与∠AOC),
    2对对顶角(即为∠AOD与∠BOC,∠BOD与∠AOC).
    【点睛】
    本题主要考查对顶角及邻补角的概念,熟练掌握对顶角及邻补角的概念是解题的关键.
    5、60°
    【分析】
    由CD⊥AB,FE⊥AB,则,则∠2=∠4,从而证得,得∠B=∠ADG,则答案可解.
    【详解】
    解:CD⊥AB于D,FE⊥AB于E,
    ∴,
    ∴∠2=∠4,
    又∵∠1=∠2,
    ∴∠1=∠4,
    ∴,
    ∴.
    【点睛】
    本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.
    6、两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
    【分析】
    利用平行线的性质定理和判定定理解答即可.
    【详解】
    解:∵AB∥CD,
    ∴∠AME=∠CNE.(两直线平行,同位角相等),
    ∵MP平分∠AME,NQ平分∠CNE,
    ∴∠1=∠AME,=∠CNE.( 角平分线的定义),
    ∵∠AME=∠CNE,
    ∴∠1=∠2.(等量代换),
    ∵∠1=∠2,
    ∴MP∥NQ.(同位角相等,两直线平行).
    故答案为:两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
    【点睛】
    此题考查的是平行线的判定及性质,掌握平行线的性质定理和判定定理是解决此题的关键.
    7、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;
    【分析】
    (1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;
    (2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.
    【详解】
    解:(1)如图所示,过点P作PG∥l1,
    ∴∠APG=∠PAC=15°,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠APG+∠BPG=55°;

    (2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;
    如图1所示,当P在DC延长线上时,过点P作PG∥l1,
    ∴∠APG=∠PAC,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;

    如图2所示,当P在CD延长线上时,过点P作PG∥l1,
    ∴∠APG=∠PAC,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;
    ∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.

    【点睛】
    本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.
    8、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
    【分析】
    利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
    【详解】
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=∠FEC(等量代换),
    ∴AB∥EF(同位角相等,两直线平行),
    又∵∠1=∠2(已知),
    ∴AB∥CD(内错角相等,两直线平行),
    ∴EF∥CD(平行于同一条直线的两直线互相平行),
    ∴∠FDG=∠EFD(两直线平行,内错角相等),
    故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
    【点睛】
    本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
    9、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.
    【分析】
    三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.
    【详解】
    (1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.
    (2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.
    (3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.
    以第一个命题为例证明如下:
    ∵AB∥DE,
    ∴∠B=∠DOC.
    ∵BC∥EF,
    ∴∠DOC=∠E,
    ∴∠B=∠E.
    【点睛】
    本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.
    10、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°
    【分析】
    (1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;
    (2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;
    (3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.
    【详解】
    解:(1)作 ,

    ∵MN//PQ,
    ∴,
    ∴ ,
    ∴ ;
    (2)①如图所示,

    ②过点F作 ,

    ∴ ,
    ∴ ,
    ∵ ,
    ∴ ,

    ∴ ,
    ∴ ,
    ∵ ,
    ∴ ;
    (3)延长AE交PQ于点G,

    设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,
    ∴∠BCQ=180°−my°,
    由(1)知,∠ABC=mx°+180°−my°,
    ∴y°−x°=,
    ∵MNPQ,
    ∴∠MAE=∠DGP=x°,
    则∠CDA=∠DCP−∠DGC
    =y°−x°
    =,
    即m∠CDA+∠ABC=180°.
    【点睛】
    本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.

    相关试卷

    2021学年第十三章 相交线 平行线综合与测试随堂练习题:

    这是一份2021学年第十三章 相交线 平行线综合与测试随堂练习题,共29页。试卷主要包含了如图,能与构成同位角的有,如图,直线a,如图所示,下列说法错误的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试复习练习题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试复习练习题,共32页。试卷主要包含了如图,,交于点,,,则的度数是,如图,下列条件中能判断直线的是,如图,在等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试习题,共33页。试卷主要包含了如图,直线a,直线等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map