开学活动
搜索
    上传资料 赚现金

    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项训练练习题(无超纲)

    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项训练练习题(无超纲)第1页
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项训练练习题(无超纲)第2页
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项训练练习题(无超纲)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题,共32页。试卷主要包含了如图,直线b,下列说法中正确的有个等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,下列四个结论:①∠1=∠3;②∠B=∠5;③∠B+∠BAD=180º;④∠2=∠4;⑤∠D+∠BCD=180º.能判断ABCD的个数有 ( )A.2个 B.3个 C.4个 D.5个2、如图,∠1=∠2,∠3=25°,则∠4等于(    A.165° B.155° C.145° D.135°3、如图,直线l1l2,直线l3l1l2分别相交于点ACBCl3l1于点B,若∠2=30°,则∠1的度数为(  )A.30° B.40° C.50° D.60°4、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为(  )A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°5、如果两个角的一边在同一直线上,另一边互相平行,则这两个角(    A.相等 B.互补 C.互余 D.相等或互补6、如图,直线bc被直线a所截,则是(   A.对顶角 B.同位角 C.内错角 D.同旁内角7、点P是直线外一点,为直线上三点,,则点P到直线的距离是(      A.2cm B.小于2cm C.不大于2cm D.4cm8、下列说法中正确的有(  )个①两条直线被第三条直线所截,同位角相等;②同一平面内,不相交的两条线段一定平行;③过一点有且只有一条直线垂直于已知直线;④经过直线外一点有且只有一条直线与这条直线平行;⑤从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.A.1 B.2 C.3 D.49、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为(  )A.164°12' B.136°12' C.143°88' D.143°48'10、如图,不能推出ab的条件是(  )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知直线ABCD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.2、如图①,已知的交点为,现作如下操作:第一次操作,分别作的平分线,交点为;第二次操作,分别作的平分线,交点为;第三次操作,分别作的平分线,交点为……第次操作,分别作的平分线,交点为.如图②,若,则的度数是__________.3、如图,将一块直角三角板与一张两边平行的纸条按照如图所示的方式放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2=∠3;④∠4+∠5=180°.其中正确的是________.(填序号)4、如图,已知ABCD,则____.5、如图,若所截,则与______________是内错角.三、解答题(10小题,每小题5分,共计50分)1、(感知)已知:如图①,点EAB上,且CE平分.求证:将下列证明过程补充完整:证明:∵CE平分(已知),__________(角平分线的定义),(已知),___________(等量代换),(______________).(探究)已知:如图②,点EAB上,且CE平分.求证:(应用)如图③,BE平分,点ABD上一点,过点ABE于点E,直接写出的度数.2、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.解:∵∠A=120°,∠FEC=120°(已知),∴∠A             ).AB             ).又∵∠1=∠2(已知),ABCD       ).EF              ).∴∠FDG=∠EFD       ).3、已知:如图①,AB∥CD,点F在直线ABCD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.(1)如图①,若∠BEF=130°,则∠FGC     度;(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点EEM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC     度.解:如图②,过点EEM∥FG,交CD于点MAB∥CD(已知)∴∠BEM=∠EMC     又∵EM∥FG∴∠FGC=∠EMC     EFG+∠FEM=180°(      即∠FGC=(      )(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(      又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC     即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.4、如图所示,直线ABCD相交于点O,∠1=65°,求∠2、∠3、∠4的度数5、已知三点在同一条直线上,平分平分(1)若,如图1,则      (2)若,如图2,求的度数;(3)若如图3,求的度数.6、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)7、如图,点ABC在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:(1)延长线段AB到点D,使BDAB(2)过点CCEAB,垂足为E(3)点C到直线AB的距离是      个单位长度;(4)通过测量           ,并由此结论可猜想直线BCAF的位置关系是       8、如图,已知点O是直线AB上一点,射线OM平分(1)若,则______度;(2)若,求的度数.9、如图所示,点分别在上,均与相交,,求证:10、按下面的要求画图,并回答问题:(1)如图①,点M从点O出发向正东方向移动4个格,再向正北方向移动3个格.画出线段OM,此时M点在点O的北偏东      °方向上(精确到1°),OM两点的距离是      cm.(2)根据以下语句,在“图②”上边的空白处画出图形.画4cm长的线段AB,点P是直纸AB外一点,过点P画直线AB的垂线PD,垂足为点D.你测得点PAB的距离是      cm. -参考答案-一、单选题1、A【分析】根据同位角相等、内错角相等、同旁内角互补的两直线平行分别判断即可.【详解】解:①∵,∴,无法推出②∵,∴③∵,∴,无法推出④∵,∴⑤∵,无法推出综上所述,能判断的是:②④,有2个,故选:A.【点睛】题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2、B【分析】设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.【详解】解:设∠4的补角为,如下图所示:∠1=∠2,故选:B.【点睛】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.3、D【分析】根据平行线的性质和垂直的定义解答即可.【详解】解:∵BCl3l1于点B∴∠ACB=90°,∵∠2=30°,∴∠CAB=180°−90°−30°=60°,l1l2∴∠1=∠CAB=60°.故选:D【点睛】此题考查平行线的性质,关键是根据平行线的性质解答.4、D【分析】,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, , 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.5、D【分析】根据平行线的性质,结合图形解答即可.【详解】如图,当AEBD时,∠EAB与∠DBC符合题意,∴∠EAB=∠DBC如图,当AEBD时,∠EAF与∠DBC符合题意,∵∠EAB+∠EAF=180°,∠EAB=∠DBC∴∠DBC +∠EAF=180°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质,灵活运用属性结合是解题的关键.6、B【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.7、C【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且∴点到直线的距离不大于故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.8、A【分析】根据平行线的性质,垂线的性质,平行公理,点到直线的距离的定义逐项分析判断即可.【详解】①互相平行的两条直线被第三条直线所截,同位角相等,故①不正确;②同一平面内,不相交的两条直线一定平行,故②不正确;③同一平面内,过一点有且只有一条直线垂直于已知直线,故③不正确;④经过直线外一点有且只有一条直线与这条直线平行,故④正确⑤从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故⑤不正确.故正确的有④,共1个,故选A.【点睛】本题考查了平行线的性质,平行公理,垂线的性质,点到直线的距离,掌握相关定理性质是解题的关键.9、D【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.10、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:是一对内错角,当时,可判断,故不符合题意;是邻补角,当时,不能判定,故符合题意;是一对同位角,当时,可判断,故不合题意;是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.二、填空题1、18°度【分析】根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.【详解】解:∵∠COE是直角,∴∠COE=90°,∵∠COF=36°,∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,OF平分∠AOE∴∠AOF=∠EOF=54°,∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,∴∠BOD=∠AOC=18°.故答案为:18°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.2、【分析】先过,根据,得出,再根据平行线的性质,得出,进而得到;先根据的平分线交点为,运用图①的结论,得出;同理可得;根据的平分线,交点为,得出据此得到规律,最后求得的度数即可.【详解】解:如图①,过由此可得:如图②,的平分线交点为的平分线交点为的平分线,交点为以此类推,时,故答案为:【点睛】本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.3、①②④【分析】根据平行线的性质,直角三角板的性质对各小题进行验证即可得解.【详解】解:∵纸条的两边互相平行,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,故①,②,④正确;∵三角板是直角三角板,∴∠2+∠4=180°-90°=90°,∵∠3=∠4,∴∠2+∠3=90°,故③不正确.综上所述,正确的是①②④.故答案为:①②④.【点睛】本题考查了平行线的性质,直角三角板的性质,熟记性质与概念并准确识图是解题的关键.4、95°【分析】过点EEFAB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.【详解】解:如图,过点EEFABEF//AB∴∠BEF+∠ABE=180°,∵∠ABE=120°,∴∠BEF=180°-∠ABE=180°-120°=60°,EF//ABAB//CDEF//CD∴∠FEC=∠DCE∵∠DCE=35°,∴∠FEC=35°,∴∠BEC=∠BEF+∠FEC=60°+35°=95°.故答案为:95°【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.5、【分析】根据内错角的定义填空即可.【详解】解:是内错角,故答案为【点睛】本题主要考查内错角的定义,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.三、解答题1、【感知】ECDECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.【详解】感知CE平分(已知),ECD(角平分线的定义),(已知),ECD(等量代换),(内错角相等,两直线平行).故答案为:ECDECD;内错角相等,两直线平行探究CE平分.应用BE平分∠DBCAEBC∴∠CBE=∠E,∠BAE+∠ABC=180゜,∴∠E=∠ABE∴∠ABC=80゜【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.2、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等【分析】利用平行线的判定,由已知得ABEFABCD,可推出EFCD,利用平行线的性质得结论【详解】解:∵∠A=120°,∠FEC=120°(已知),∴∠A=∠FEC(等量代换),ABEF(同位角相等,两直线平行),又∵∠1=∠2(已知),ABCD(内错角相等,两直线平行),EFCD(平行于同一条直线的两直线互相平行),∴∠FDG=∠EFD(两直线平行,内错角相等),故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.3、(1)40°;(2)见解析;(3)70°【分析】(1)过点FFN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;(2)根据题目补充理由和相关结论即可;(3)类似(2)中的方法求解即可.【详解】解:(1)过点FFN∥ABFN∥AB,∠FEB=130°,∴∠EFN+∠FEB=180°,∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,∵∠EFG=90°,∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,AB∥CDFN∥CD∴∠FGC=∠NFG=40°.故答案为:40°;(2)如图②,过点EEMFG,交CD于点MAB∥CD(已知)∴∠BEM=∠EMC(两直线平行,内错角相等)又∵EM∥FG∴∠FGC=∠EMC(两直线平行,同位角相等)EFG+∠FEM=180°(两直线平行,同旁内角互补)即∠FGC=(∠BEM)(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC=90°故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°(3)过点EEH∥FG,交CD于点HAB∥CD∴∠BEH=∠EHC又∵EM∥FG∴∠FGC=∠EHCEFG+∠FEH=180°即∠FGC=∠BEH∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH又∵∠EFG=110°∴∠FEH=70°∴∠FEB﹣∠FGC=70°故答案为:70°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.4、∠2=115°,∠3=65°,∠4=115°【分析】根据对顶角相等和邻补角定义可求出各个角.【详解】解:∵∠1=65°,∠1=∠3,∴∠3=65°,∵∠1=65°,∠1+∠2=180°,∴∠2=180°-65°=115°,又∵∠2=∠4,∴∠4=115°.【点睛】本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.5、(1)90;(2)90°;(3)90°【分析】(1)由三点在同一条直线上,得出,则,由角平分线定义得出,即可得出结果;(2)由,则,同(1)即可得出结果;(3)易证,同(1)得,即可得出结果.【详解】解:(1)三点在同一条直线上,平分平分故答案为:90;(2)同(1)得:(3)同(1)得:【点睛】本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键.6、(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行;【分析】(1)根据两直线被第3条直线所截,确定∠2,∠3的位置为内错角,然后再判断直线平行即可;(2)根据两直线被第3条直线所截,确定∠2,∠5的位置为同位角,然后再判断直线平行即可;(3)根据两直线被第3条直线所截,确定∠2,∠1的位置为同旁内角,然后再判断直线平行即可;(4)根据两直线被第3条直线所截,确定∠5,∠3的位置为内错角,然后再判断直线平行即可.【详解】(1)如果∠2=∠3,那么EF∥DC.(内错角相等,两直线平行);(2)如果∠2=∠5,那么EF∥AB.(同位角相等,两直线平行);(3)如果∠2+∠1=180°,那么AD∥BC.(同旁内角互补,两直线平行);(4)如果∠5=∠3,那么AB∥CD.(内错角相等,两直线平行.故答案为:(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行.【点睛】本题考查平行线的判定,角的位置关系识别,掌握三线八角的两角位置关系,直线平行的判定定理是解题关键.7、(1)见解析;(2)见解析;(3)2;(4),平行【分析】(1)根据网格的特点和题意,延长,使(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,(3)点C到直线AB的距离即的长,网格的特点即可数出的长;(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度【详解】解:(1)(2)如图所示, (3)由网格可知即点C到直线AB的距离是个单位长度故答案为:2(4)通过测量,可知故答案为:,平行【点睛】本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.8、(1),(2)【分析】(1)根据平角的定义可求(2)根据,代入解方程求出即可.【详解】解:(1)∵故答案为:(2)∵OM平分【点睛】本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.9、证明见解析【分析】,证明,再证,最后根据对顶角相等,可得答案.【详解】证明:∵又∵【点睛】本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.10、(1)图见解析,53,5;(2)图见解析,3.【分析】(1)先根据点的移动得到点,再连接点可得线段,然后测量角的度数和线段的长度即可得;(2)先画出线段,再根据垂线的尺规作图画出垂线,然后测量的长即可得.【详解】解:(1)如图,线段即为所求.此时点在点的北偏东方向上,两点的距离是故答案为:53,5;(2)如图,线段和垂线即为所求.测得点的距离是故答案为:3.【点睛】本题考查了测量角的大小、线段的长度、作线段和垂线,熟练掌握尺规作图的方法是解题关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题,共32页。试卷主要包含了如图木条a,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题,共33页。试卷主要包含了直线m外一点P它到直线的上点A,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。

    初中数学第十三章 相交线 平行线综合与测试习题:

    这是一份初中数学第十三章 相交线 平行线综合与测试习题,共28页。试卷主要包含了如图,已知,,平分,则,下列说法等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map