沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )
A.4B.6C.12D.36
2、100的算术平方根是( )
A.10B.C.D.
3、已知a=,b=-|-|,c=(-2)3,则a,b,c的大小关系是( )
A.b<a<cB.b<c<aC.c<b<aD.a<c<b
4、如果a、b分别是的整数部分和小数部分,那么的值是( )
A.8B.C.4D.
5、在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是( )
A.﹣B.﹣3C.|﹣3.14|D.﹣π
6、下列说法正确的是( )
A.是分数
B.0.1919919991…(每相邻两个1之间9的个数逐次加1)是有理数
C.﹣3x2y+4x﹣1是三次三项式,常数项是1
D.单项式﹣的次数是2,系数为﹣
7、在0.1010010001…(相邻两个1之间依次多一个0),,,中,无理数有( )
A.1个B.2个C.3个D.4个
8、下列判断:①10的平方根是±;②与互为相反数;③0.1的算术平方根是0.01;④()3=a;⑤=±a2.其中正确的有( )
A.1个B.2个C.3个D.4个
9、估计的值应该在( ).
A.1和2之间B.2和3之间C.3和4之间D.4和5之间
10、4的平方根是( )
A.2B.﹣2C.±2D.没有平方根
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知的小数部分是a,的整数部分是b,则a+b=_________.
2、的平方根是__________.
3、一个正方形的面积为5,则它的边长为_____.
4、若,且a,b是两个连续的整数,则的值为______.
5、对于实数a,b,定义运算“*”如下:a*b=(a+b)2﹣(a﹣b)2.若(m+2)*(m﹣3)=24,则m的值为______.
三、解答题(10小题,每小题5分,共计50分)
1、解方程:
(1)x2=81;
(2)(x﹣1)3=27.
2、计算:.
3、已知:,求x+17的算术平方根.
4、计算:.
5、解方程:
(1)4(x﹣1)2=36;
(2)8x3=27.
6、计算:(π-4)0+|-6|-+
7、已知a2=16,b3=27,求ab的值.
8、阅读下面的文字,解答问题.
现规定:分别用和表示实数x的整数部分和小数部分,如实数3.14的整数部分是,小数部分是;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即就是的小数部分,所以.
(1) , ; , .
(2)如果,,求的立方根.
9、求下列各数的算术平方根:
(1)0.64 (2)
10、计算题
(1);
(2)(﹣1)2021+.
-参考答案-
一、单选题
1、D
【分析】
根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.
【详解】
解:∵一个正数a的两个不同平方根是2x-2和6-3x,
∴2x-2+6-3x=0,
解得:x=4,
∴2x-2=2×4-2=8-2=6,
∴正数a=62=36.
故选择D.
【点睛】
本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.
2、A
【分析】
根据算术平方根的概念:一个正数x的平方等于a,即,那么这个正数x就叫做a的算术平方根,即可解答.
【详解】
解:∵,,(舍去)
∴100的算术平方根是10,
故选A.
【点睛】
本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念.
3、C
【分析】
本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较.
【详解】
解:由题意得:a===4,b==,c==-8,
∴c<b<a.
故选:C.
【点睛】
本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键.
4、B
【分析】
先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可
【详解】
则
a、b分别是的整数部分和小数部分,则
故选B
【点睛】
本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键.
5、D
【分析】
把数字从大到小排序,然后再找最小数.
【详解】
解:|﹣3.14|=3.14.|﹣3|=3,|-|=,|﹣π|=π.
∴﹣π<﹣3<﹣<|﹣3.14|,
故选:D.
【点睛】
本题考查实数大小比较,掌握比较方法是本题关键.
6、D
【分析】
根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可.
【详解】
解:A、是无限不循环小数,不是分数,故此选项不符合题意;
B、0.1919919991…(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;
C、﹣3x2y+4x﹣1是三次三项式,常数项是-1,故此选项不符合题意;
D、单项式﹣的次数是2,系数为﹣,故此选项符合题意;
故选D.
【点睛】
本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.
7、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;
是有理数;
是有理数;
是无理数;
∴无理数有2个,
故选B.
【点睛】
本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.
8、C
【分析】
根据平方根和算术平方根的概念,对每一个答案一一判断对错.
【详解】
解:①10的平方根是±,正确;
②是相反数,正确;
③0.1的算术平方根是,故错误;
④()3=a,正确;
⑤a2,故错误;
正确的是①②④,有3个.
故选:C.
【点睛】
本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.
9、C
【分析】
根据25<29<36估算出的大小,然后可求得的范围.
【详解】
解:∵25<29<36,
∴<<,即5<<6.
10、C
【分析】
根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.
【详解】
解:4的平方根,
即:,
故选:C.
【点睛】
题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.
二、填空题
1、
【分析】
先分别求出和的范围,得到a、b的值,再代入a+b计算即可.
【详解】
∵2<<3,2<<3,
∴a=−2,b=2,
a+b=−2+2=,
故答案为.
【点睛】
本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.
2、
【分析】
先求出,再根据平方根性质,即可求解.
【详解】
解:∵,
∴的平方根是 .
故答案为:
【点睛】
本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.
3、
【分析】
根据正方形面积根式求出边长,即可得出答案.
【详解】
解:边长为:
故答案为
【点睛】
本题考查了算术平方根,关键是会求一个数的算术平方根.
4、7
【分析】
先判断出的取值范围,确定a和b的值,即可求解.
【详解】
解:∵,
∴a=3,b=4,
∴a+b=7.
故答案为:7.
【点睛】
本题考查了无理数的估算,正确估算出的取值范围是解题关键.
5、或4
【分析】
先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得.
【详解】
解:由题意得:,即,
,
或,
解得或,
故答案为:或4.
【点睛】
本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.
三、解答题
1、(1)x=±9;(2)x=4
【分析】
(1)方程利用平方根定义开方即可求出解;
(2)方程利用立方根定义开立方即可求出解.
【详解】
解:(1)开方得:x=±9;
(2)开立方得:x﹣1=3,
解得:x=4.
【点睛】
本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).
2、2
【分析】
根据算术平方根与立方根的定义即可完成.
【详解】
解:
.
【点睛】
本题是实数的运算,考查了算术平方根的定义、立方根的定义,关键是掌握两个定义,要注意的是负数没有平方根,而任何实数都有立方根.
3、3
【分析】
首先根据,求出x的值,然后代入x+17求解算术平方根即可.
【详解】
解:∵,
∴5x+32=-8,
解得:x=-8,
∴x+17=-8+17=9,
∵9的算术平方根为3,
∴x+17的算术平方根为 3,
故答案为:3.
【点睛】
此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.
4、1
【分析】
直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、有理数的乘方运算法则分别化简,再利用有理数的加减运算法则计算得出答案.
【详解】
解:
=1+3﹣2﹣1
=1.
【点睛】
本题主要考查了实数的混合运算,熟练掌握相关运算法则是解答本题的关键.
5、(1)x=4或﹣2;(2)x=
【分析】
(1)先变形为(x﹣1)2=9,然后求9的平方根即可;
(2)先变形为x3=,再利用立方根的定义得到答案.
【详解】
解:(1)方程两边除以4得,(x﹣1)2=9,
∴x﹣1=±3,
∴x=4或﹣2;
(2)方程两边除以8得,x3=,
所以x=.
【点睛】
本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.
6、9
【分析】
根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.
【详解】
解:原式
【点睛】
本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.
7、64或﹣64
【分析】
根据平方根、立方根、有理数的乘方解决此题.
【详解】
解:∵a2=16,b3=27,
∴a=±4,b=3.
当a=4,b=3时,ab=43=64.
当a=﹣4,b=3时,ab=(﹣4)3=﹣64.
综上:ab=64或﹣64.
【点睛】
本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.
8、(1)1,,3,;(2)2
【分析】
(1)先估算出和的范围,再根据题目规定的表示方法写出答案即可;
(2)先估算出,的范围,即可求出a,b的值,进一步即可求出结果.
【详解】
(1)∵1<<2,3<<4,
∴[]=1,<>=−1,[]=3,<>=−3,
故答案为:1,,3,;
(2)∵2<<3,10<<11,
∴<>=a=−2,[]=b=10,
∴,
∴的立方根是2.
【点睛】
本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.
9、 (1) 0.8; (2)
【分析】
根据算术平方根的定义求解即可.
【详解】
解:(1)因为0.82=0.64,
所以0.64的算术平方根是0.8,即=0.8.
(2)因为,
所以的算术平方根是,即.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.
10、(1)2+2;(2)4
【分析】
(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;
(2)原式利用乘方的意义,算术平方根定义计算即可得到结果.
【详解】
解:(1)原式=2﹣2+|﹣4|
=2﹣2+4
=2+2;
(2)原式=﹣1+5
=4.
【点睛】
本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共19页。试卷主要包含了64的立方根为.,下列语句正确的是,若 ,则,下列说法等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题,共23页。试卷主要包含了下列说法正确的是,的相反数是,下列说法中错误的是,若,那么,估算的值是在之间,的算术平方根是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共20页。试卷主要包含了下列运算正确的是,若,则的值为,观察下列算式,16的平方根是,下列各式中正确的是等内容,欢迎下载使用。