数学第十七章 方差与频数分布综合与测试课堂检测
展开
这是一份数学第十七章 方差与频数分布综合与测试课堂检测,共19页。试卷主要包含了下列说法正确的是,2020年某果园随机从甲,在频数分布表中,所有频数之和,在这学期的六次体育测试中,甲等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成( )组.A.10 B.9 C.8 D.72、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为( )A.3和2 B.4和3 C.5和2 D.6 和23、已知一组数据﹣1,2,0,1,﹣2,那么这组数据的方差是( )A.10 B.4 C.2 D.0.24、为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是( )A.众数是 B.中位数是 C.平均数是 D.方差是5、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S甲2=5,S乙2=20,S丙2=23,S丁2=32,则这四名学生的数学成绩最稳定的是( )A.甲 B.乙 C.丙 D.丁6、下列说法正确的是( )A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶,出现一次故障”是随机事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差大的更稳定7、2020年某果园随机从甲、乙、丙、丁四个品种的苹果树上各采摘了10棵.每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如下表所示: 甲乙丙丁25252421s22.22.02.12.0今年准备从这四个品种中选出一种产量既高又稳定的苹果树进行种植.应选的品种是( )A.甲 B.乙 C.丙 D.丁8、在频数分布表中,所有频数之和( )A.是1 B.等于所有数据的个数C.与所有数据的个数无关 D.小于所有数据的个数9、在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是( )A.乙同学的成绩更稳定 B.甲同学的成绩更稳定C.甲、乙两位同学的成绩一样稳定 D.不能确定哪位同学的成绩更稳定10、某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中不合格产品约为( )A.50件 B.500件 C.5000件 D.50000件第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一组数据的方差S[(6﹣7)+(10﹣7)+(a﹣7)+(b﹣7)+(8﹣7)](a,b为常数),则a+b的值为_______.2、甲、乙两名篮球运动员进行每组10次的投篮训练,5组投篮结束后,两人的平均命中数都是7次,方差分别是,,则在本次训练中,运动员__________的成绩更稳定.3、某班级有45名学生在期中考试学情分析中,分数段在70~79分的频率为0.4,则该班级在这个分数段内的学生有 _____人.4、若整数1至50的方差为,整数51至100的方差为,则与的大小关系是__________.5、一组数据5,8,x,10,4的平均数为2x,则x=_____,这组数据的方差为_____.三、解答题(5小题,每小题10分,共计50分)1、对饮食健康越来越关注,特别关注食物的热量高低某校现在对学生食品的热量进行调查,随机从八、九年级中各随机抽取20名学生,对其食品热量进行整理、描述和分析(热量值用表示,共分为四个等级:A.,B.,C.,D.),下面给出了部分信息.八年级20名学生食品的热量中B等级包含的所有数据为:73,76,76,77,77,77,79.九年级20名学生食品的热量是:64,64,66,68,69,70,72,74,77,78,80,82,85,85,85,85,86,93,96,101.八、九年级抽取的学生食品热量统计表年级八年级九年级平均数7979中位数a79众数81b根据以上信息,解答下列问题:(1)填空:上述图表中____________, ____________.(2)根据图表中的数据,判断八、九年级中哪个年级学生食品的热量更高?请说明理由(写出一条理由即可);(3)若该校八、九年级分别有1500,1600名学生,估计学生吃的食品的热量为A等级的学生共有多少人?2、为庆祝五四青年节,学校计划在“五四”前夕举行班级歌咏比赛,要确定一首喜欢唱的人数最多的歌曲为每班必唱歌曲.为此提供代号为四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制成如下的两幅不完整的统计图.请根据图1,图2所提供的信息,解答下列问题:(1)本次抽样调查的学生有多少名?(2)请将条形统计图补充完整;(3)求扇形图中的圆心角度数;(4)由统计图发现喜欢唱的人数最多的歌曲为哪一首?若全校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生喜欢唱此歌曲?3、某校为了增强学生的疫情防控意识,组织全校600名学生进行了疫情防控知识竞赛.从中随机抽取了名学生的竞赛成绩(满分100分,每名学生的成绩记为分),分成四组:组;组;组;组,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)求的值.(2)补全频数分布直方图.(3)若规定学生竞赛成绩为优秀,请估计全校竞赛成绩达到优秀的学生人数.4、为了解中考体育科目训练情况,某区从全区九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图、图2所示的两幅不完整的统计图,请根据统计中的信息解答下列问题:(1)求本次抽样测试的学生人数是多少;(2)通过计算把条形统计图补充完整;(3)该区九年级有学生3500名,如果全部参加这次中考体育科目考试,请估计不及格的人数有多少人.5、为进一步推广大课间活动,某中学对已开设的A篮球、B立定跳远、C跑步、D跳绳,四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)学校共抽取了多少学生进行调查;(2)通过计算把条形统计图补充完整;(3)若该校共用800名学生,请你估计喜欢立定跳远和跳绳活动项目的学生共有多少人. -参考答案-一、单选题1、A【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【详解】解:145-50=95,
95÷10=9.5,
所以应该分成10组.
故选A.【点睛】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.2、D【分析】先根据平均数定义求出x,再根据方差公式计算即可求解.【详解】解:由题意得,解得x=6,∴这组数据的方差是.故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.3、C【分析】根据方差公式进行计算即可.方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差.【详解】﹣1,2,0,1,﹣2,这组数据的平均数为故选C【点睛】本题考查了求一组数据的方差,掌握方差的计算公式是解题的关键.4、D【分析】根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可【详解】根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意;这组数据的中位数为:6,故B选项正确,不符合题意;这组数据的平均数为,故C选项正确,不符合题意;这组数据的方差为:,故D选项不正确,符合题意.故选D.【点睛】本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:.5、A【分析】根据方差的意义求解即可.【详解】解:∵S甲2=5,S乙2=20,S丙2=23,S丁2=32,∴S甲2<S乙2<S丙2<S丁2,∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.6、B【分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.【详解】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;故选:B.【点睛】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.7、B【分析】首先比较平均数,平均数较高的是甲和乙,进而根据方差比较选出方差较小的即可.【详解】根据表格可知甲、乙的平均数较高,则表示产量高,比较甲、乙的方差,乙的方差比甲小,则乙品种的苹果树产量高又稳定,故选B.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.8、B【分析】根据频数与频率的关系,审清题意频数之和等于所有数据的个数,频率之和等于1,即可得解.【详解】A. 频数分布表中,所有频率之和是1,故选项A不正确 ;B. 频数之和等于所有数据的个数,故选项B正确;C. 在频数分布表中,所有频数之和与所有数据的个数有关 ,故选项C不正确;D. 在频数分布表中,所有频数之和等于所有数据的个数,故选项D不正确.故选择B.【点睛】本题考查频数分布表中的频数与频率问题,频数之和等于总数,频率之和等于1,注意区分是解题关键.9、A【分析】根据方差的定义逐项排查即可.【详解】解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样∴乙同学的成绩更稳定.故选A.【点睛】本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.10、C【分析】抽取的100件进行质检,发现其中有5件不合格,由此即可求出这类产品的不合格率是5%,然后利用样本估计总体的思想,即可知道不合格率是5%,即可求出该厂这10万件产品中不合格品的件数.【详解】解:∵某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,∴不合格率为5÷100=5%,∴估计该厂这10万件产品中不合格品约为10×5%=0.5万件,故选C.【点睛】此题主要考查了样本估计总体的思想,此题利用样本的不合格率去估计总体的不合格率.二、填空题1、11【分析】根据方差及平均数的定义解答.【详解】解:由题意得,∴,故答案为:11.【点睛】此题考查方差的定义,平均数的计算公式,熟记方差的定义是解题的关键.2、乙【分析】先根据乙的方差比甲的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵,,∴,∴乙运动员的成绩更稳定;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3、18【分析】根据频数总数×频率,直接求解即可.【详解】依题意该班级在在70~79分数段内的学生有(人).故答案为:18.【点睛】本题考查了根据描述求频数,掌握频数、频率、总数之间的关系是解题的关键.4、【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:整数51至100是整数1至50的每一个数都加上50所得,一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,波动程度不变,方差不变,则.故答案为:.【点睛】本题考查方差的意义:一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.5、3 6.8 【分析】本题可用求平均数的公式解出x的值,在运用方差的公式解出方差.【详解】解:∵数据5,8,x,10,4的平均数是2x,∴5+8+x+10+4=5×2x,解得x=3,=2×3=6,s2= [(5﹣6)2+(8﹣6)2+(3﹣6)2+(10﹣6)2+(4﹣6)2]=×(1+4+9+16+4)=6.8.故答案为3,6.8.【点睛】本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键三、解答题1、(1)78,85;(2)九年级学生食品热量更高,理由见解析;(3)780人【分析】(1)根据八年级的数据求得A等级人数,判断出中位数位于B等级,可求得a的值,根据众数的意义以及九年级的数据求得b;(2)比较平均数、中位数可得结论;(3)分别计算该校八、九年级学生的食品热量为A等级的百分比可得答案.【详解】解:(1)八年级学生食品的热量处于A等级人数20(人),∴八年级学生食品的热量的中位数位于B等级的第6、7两个数据,即77、79,∴a=;九年级20名学生食品的热量出现最多是85,共有4次,∴a=85;故答案为:78,85;(2)九年级学生食品热量更高. 理由如下:由样本数据可得,八、九年级学生食品热量的平均数均为79,而八年级学生食品热量的中位数78,九年级学生食品热量的中位数79,79>78,所以九年级学生食品热量更高;(3)由样本数据可得,八年级学生的食品热量为A等级的有4人,占比﹔九年级学生的食品热量为A等级的有6人,占比.则两个年级共有( 人).【点睛】本题考查了中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.2、(1)本次抽样调查的学生有180人;(2)见解析;(3)72°;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.【分析】(1)用曲目D的人数除以其占比即可得到答案;(2)根据(1)所求,先算出曲目C的人数,然后补全统计图即可;(3)用360度乘以曲目A的人数占比即可得到答案;(4)根据统计图可知喜欢曲目C的人数最多,然后用全校人数乘以样本中曲目C的占比即可得到答案.【详解】解:(1)由题意得:总人数人,答:本次抽样调查的学生有180人;(2)由(1)得喜欢曲目C的人数人,∴补全条形统计图如下所示:(3)由题意得扇形图中A的圆心角度数;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有人,答:由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,补全统计图,求扇形圆心角度数等等,读懂统计图是解题的关键.3、(1)50;(2)见解析;(3)180人【分析】(1)根据组的频数和所占的百分比,可以求得的值;(2)根据(1)中的值和频数分布直方图中的数据,可以计算出组的频数,从而可以将频数分布直方图补充完整;(3)根据直方图中的数据,可以计算出全校成绩达到优秀的人数.【详解】解:(1);(2)组学生有:(人),补全的频数分布直方图如图所示;(3)(人),答:估算全校成绩达到优秀的有180人.【点睛】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确统计图的特点和中位数的含义,利用数形结合的思想解答.4、(1)抽样测试的学生人数为40人;(2)条形统计图见详解;(3)估计不及格人数有700人【分析】(1)用B级人数除以B级人数占的百分比即可;(2)用(1)中求得的数据乘以即可求出C级人数,然后补全统计图即可;(3)用总人数乘以D级人数的比例即可.【详解】解:(1)(人),∴本次抽样测试的学生人数是40人;(2)(人),∴抽样测试中为C级的人数是14人,补全条形统计图,如图所示;(3)(人),∴估计不及格的人数有700人.【点睛】题目主要考查扇形统计图和条形统计图的综合,求样本总量,画条形统计图,用样本估计总体等,理解题意,数量掌握计算方法是解题关键.5、(1)学校共抽取了150名学生进行调查;(2)见解析;(3)400人【分析】(1)根据题意由A项目人数及其所占百分比可得被调查总人数;
(2)由题意根据四个项目人数之和等于总人数求出C项目人数,从而补全图形;
(3)根据题意用总人数乘以样本中喜欢立定跳远和跳绳活动项目的学生所占比例即可.【详解】解:(1)根据题意得:15÷10%=150(名).答:学校共抽取了150名学生进行调查. (2)本项调查中喜欢“跑步”的学生人数是;150﹣15﹣45﹣30=60(人),画图如下:(3)800×(20%+30%)=400(人)答:估计全校喜欢立定跳远和跳绳活动项目的学生共有400人.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
相关试卷
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评,共22页。试卷主要包含了在这学期的六次体育测试中,甲,某校九年级等内容,欢迎下载使用。
这是一份数学北京课改版第十七章 方差与频数分布综合与测试课后练习题,共21页。试卷主要包含了下列一组数据等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题,共21页。试卷主要包含了在频数分布表中,所有频数之和等内容,欢迎下载使用。