初中北京课改版第十七章 方差与频数分布综合与测试课时训练
展开
这是一份初中北京课改版第十七章 方差与频数分布综合与测试课时训练,共22页。试卷主要包含了一组数据,在一次射击训练中,甲等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别,,,,这四个旅游团中年龄相近的旅游团是( )A.甲团 B.乙团 C.丙团 D.丁团2、甲、乙两位同学连续五次的数学成绩如下图所示:下列说法正确的是( )A.甲的平均数是70 B.乙的平均数是80C.S2甲>S2乙 D.S2甲=S2乙3、一组数据1、2、2、3中,加入数字2,组成一组新的数据,对比前后两组数据,变化的是( )A.平均数 B.中位数 C.众数 D.方差4、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )A.众数 B.中位数 C.平均数 D.方差5、如表是某次射击比赛中10名选手的射击成绩(环):射击成绩(环)678910人数(人)12421关于这10名选手的射击环数,下列说法不正确的是( )A.众数是8 B.中位数是5 C.平均数是8 D.方差是1.26、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是( ) 甲乙丙丁平均数/m180180185185方差8.23.9753.9A.甲 B.乙 C.丙 D.丁7、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是=1.2,=1.1,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )A.乙比甲稳定 B.甲比乙稳定C.甲和乙一样稳定 D.甲、乙稳定性没法对比8、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )A.甲比乙稳定 B.乙比甲稳定C.甲与乙一样稳定 D.无法确定9、一组数据分别为a,b,c,d,e,将这组数据中的每个数都加上同一个大于0的常数,得到一组新的数据,则这组新数据的下列统计量与原数据相比,一定不发生变化的是( )A.中位数 B.方差 C.平均数 D.众数10、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )A.众数 B.中位数 C.平均数 D.方差第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、数据,,,,的方差等于______.2、为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16,9,14,11,12,10,16,8,17,19,则这组数据的极差是____.3、若一组数据,,…的平均数是2,方差是1.则,,…的平均数是_______,方差是_______.4、甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩比较稳定的是 _____(填“甲”或“乙”).5、已知样本25,21,25,21,23,25,27,29,25,28,30,29,26,24,25,27,27,22,24,26,若组距为2,那么应分为_____组,在24.5~26.5这一组的频数是_____.三、解答题(5小题,每小题10分,共计50分)1、为了解八年级学生的数学知识技能水平,教育局组织了一次数学知识竞赛,满分为100分.为掌握甲、乙两校学生本次竞赛的情况,李老师分别从两个学校的成绩中都随机抽取20个进行整理和分析.李老师将抽取的成绩用x表示,分为A、B、C、D、E五个等级(A:;B:;C:;D:;E:),已知部分信息如下:甲校抽取的20名同学的成绩(单位:分)为:91,83,92,80,79,82,82,77,82,80,75,63,56,85,91,70,82,76,64,82已知乙校抽取的成绩中,有1名同学的成绩不超过60分.乙校抽取的学生成绩扇形统计图甲、乙两校抽取的学生成绩数据统计表班级甲校乙校平均数78.678.4中位数b80众数c80根据以上信息,解答下列问题:(1)直接写出上述图表中a、b、c的值: , , ;(2)不用计算,根据统计表,判断哪个学校的成绩好一些?并说明理由;(3)若甲、乙两校的八年级学生人数分别为420人、450人,且都参加了此次知识竞赛,估计本次竞赛中,两个学校共有多少人的成绩达到A级?2、对饮食健康越来越关注,特别关注食物的热量高低某校现在对学生食品的热量进行调查,随机从八、九年级中各随机抽取20名学生,对其食品热量进行整理、描述和分析(热量值用表示,共分为四个等级:A.,B.,C.,D.),下面给出了部分信息.八年级20名学生食品的热量中B等级包含的所有数据为:73,76,76,77,77,77,79.九年级20名学生食品的热量是:64,64,66,68,69,70,72,74,77,78,80,82,85,85,85,85,86,93,96,101.八、九年级抽取的学生食品热量统计表年级八年级九年级平均数7979中位数a79众数81b根据以上信息,解答下列问题:(1)填空:上述图表中____________, ____________.(2)根据图表中的数据,判断八、九年级中哪个年级学生食品的热量更高?请说明理由(写出一条理由即可);(3)若该校八、九年级分别有1500,1600名学生,估计学生吃的食品的热量为A等级的学生共有多少人?3、重庆北关中学有甲,乙两个学生食堂,为了了解哪个食堂更受学生欢迎,学校开展了为期20天的的数据收集工作,统计初三年级每天中午分别到甲,乙食堂就餐的人数,现对收集到的数据进行整理、描述和分析(人数用x(人)表示,共分成四个等级,A:250<x≤300;B:200<x≤250;C:150<x≤200;D:100<x≤150),下面给出了部分信息:甲、乙食堂的人数统计表:食堂甲乙平均数211196中位数a215众数b230极差188c甲食堂20天的所有人数数据为:112,125,138,146,168,177,177,177,185,218,230,234,241,246,249,260,260,279,298,300乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260请根据相关信息,回答以下问题:(1)填空:a= ,b= ,c= ,并补全乙食堂的人数数据条形统计图:(2)根据以上数据,请判断哪个食堂的更受同学们欢迎,并说明理由(一条即可);(3)已知该校初三年级共有学生400人,全校共有学生1600人,请估算北关中学甲食堂每天中午大约准备多少名同学的午餐?4、 “西安年,最中国”.西安某校九年级1班数学兴趣小组就“最想去的西安市旅游景点”,随机调查了本校部分学生,A﹣临潼秦始皇帝陵博物馆(兵马俑),B﹣大唐芙蓉园,C﹣西安城墙、D﹣陕西历史博物馆,E﹣大雁塔.要求每位同学选择且只能选择一个最想去的景点.下面是根据调查结果进行数据整理后绘制出的不完整统计图,请根据图中信息,解答下列问题:(1)补全条形统计图,则扇形统计图中表示最想去景点C的扇形圆心角的度数为____度;(2)所抽取的部分学生的众数落在______组内;(3)若该校共有1800名学生,请估计最想去景点D的学生人数.5、甲、乙两名射击选手各自射击十组,按射击的时间顺序把每组射中靶的环数值记录如下表:选手组数12345678910甲98908798999192969896乙85918997969798969898(1)根据上表数据,完成下列分析表: 平均数众数中位数方差极差甲94.5 9616.6512乙94.5 18.65 (2)如果要从甲、乙两名选手中选择一个参加比赛,应选哪一个?为什么? -参考答案-一、单选题1、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S=6,S=1.8,S=5,S=8,∴1.8<5<6<8∴S最小,∴这四个旅游团中年龄相近的旅游团是:乙团.故选:B.【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、D【分析】根据折线统计图中的信息分别计算甲、乙的平均数和方差,即可求得答案【详解】由条形统计图可知,甲的平均数是,故A选项不正确;乙的平均数是,故B选项不正确;甲的方差为,乙的方差为,故C选项不正确,D选项正确;故选D.【点睛】本题考查了折线统计图,求平均数,求方差,从统计图获取信息是解题的关键.3、D【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得:原来的平均数为,加入数字2之后的平均数为,∴平均数没有发生变化,故A选项不符合题意;原数据处在最中间的两个数为2和2,∴原数据的中位数为2,把新数据从小到大排列为1、2、2、2、3,处在最中间的数是2,∴新数据的中位数为2,故B选项不符合题意;原数据中2出现的次数最多,∴原数据的众数为2,新数据中2出现的次数最多,∴新数据的众数为2,故C选项不符合题意;原数据的方差为,新数据的方差为,∴方差发生了变化,故D选项符合题意;故选D.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.4、D【分析】根据题意得出原中位数、平均数、众数及方差,然后得出再去掉一个数据3后的中位数、众数、平均数及方差,进而问题可求解【详解】解:由题意得:原中位数为3,原众数为3,原平均数为3,原方差为1.8;去掉一个数据3后的中位数为3,众数为3,平均数为3,方差为2;∴统计量发生变化的是方差;故选D【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.5、B【分析】根据众数、中位数、平均数及方差的定义逐一计算可得答案.【详解】解:这组数据中8出现次数最多,即众数为8;其中位数是第5、6个数据的平均数,故其中位数为;平均数为,方差为,故选:B.【点睛】本题主要考查方差等知识,解题的关键是掌握众数、中位数、平均数及方差的计算方法.6、D【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解:∵,∴从丙和丁中选择一人参加比赛,∵S丙2>S丁2,∴选择丁参赛,故选:D.【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.7、A【分析】根据方差的性质解答.【详解】解:∵甲乙两人的方差分别是=1.2,=1.1,∴乙比甲稳定,故选:A.【点睛】此题考查了方差的性质:方差越小越稳定.8、C【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.9、B【分析】根据方差的意义及平均数、众数、中位数的定义求解可得.【详解】解:一组数据a,b,c,d,e的每一个数都加上同一数m(m>0),则新数据a+m,b+m,…e+m的平均数在原来的基础上也增加m,数值发生了变化则众数和中位数也发生改变,方差描述的是它的离散程度,数据整体都加m,但是它的离散程度不变,即方差不变;故选:B.【点睛】本题主要考查统计量的选择,解题的关键是熟练掌握方差的意义与平均数、众数和中位数的定义.10、B【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.二、填空题1、1.2【分析】根据平均数的计算公式先求出这组数据的平均数,再根据方差的公式计算即可.【详解】解:这组数据的平均数是:=4,则这组数据的方差是:=1.2,故答案为:1.2.【点睛】本题考查方差的定义,掌握方差的计算方法是解题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2、11【分析】根据极差=最大值-最小值求解可得.【详解】解:这组数据的最大值为19,最小值为8,所以这组数据的极差为19-8=11,故答案为:11.【点睛】本题主要考查极差,极差是指一组数据中最大数据与最小数据的差.3、8 9 【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x1,x2,…xn的平均数是2,∴数据3x1+2,3x2+2,…+3xn+2的平均数是3×2+2=8;∵数据x1,x2,…xn的方差为1,∴数据3x1,3x2,3x3,……,3xn的方差是1×32=9,∴数据3x1+2,3x2+2,…+3xn+2的方差是9.故答案为:8、9.【点睛】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.4、乙【分析】根据方差的意义求解即可.【详解】解:∵S甲2=1.4,S乙2=0.2,∴S乙2<S甲2,∴两人成绩比较稳定的是乙,故答案为:乙.【点睛】本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5、5 7 【分析】根据题意可以求出这组数据的极差,然后根据组距即可确定组数,再根据题目中的数据即可得到在24.5~26.5这一组的频数.【详解】解:由所给的数据可知,最大的数为30,最小的数为21,∴极差是:,∵组距为2,,应分为5组;∴在这一组的数据有:25、25、25、25、26、25、26、∴在这一组的频数是7.故答案为:5,7.【点睛】本题考查频数分布表,解答本题的关键是明确题意,会求一组数据的极差和划分相应的组数.三、解答题1、(1),,;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些;(3)108人【分析】(1)B等的人数=20-20×(10+10+35)-1=8,于是,可以确定a值;先将数据排序,计算第10个,11个数据的平均数即可得到b;确定出现次数最多的数据即可;(2)比较平均数,中位数,众数的大小,判断即可;(3)甲校约有人,乙校约有人,求和即可.【详解】(1)∵B等的人数=20-20×(10+10+35)-1=8,∴,∴a=40;∵第10个,11个数据是80,82,∴b=;∵82出现次数最多,是5次,∴众数c=82;故答案为:40,81,82;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些; (3)由题意,甲校约有人,乙校约有人,∴两校共约有63+45=108人的成绩达到A级.【点睛】本题考查了扇形统计图,众数,平均数,中位数,样本估计总体的思想,熟练掌握三数的定义,并灵活计算是解题的关键.2、(1)78,85;(2)九年级学生食品热量更高,理由见解析;(3)780人【分析】(1)根据八年级的数据求得A等级人数,判断出中位数位于B等级,可求得a的值,根据众数的意义以及九年级的数据求得b;(2)比较平均数、中位数可得结论;(3)分别计算该校八、九年级学生的食品热量为A等级的百分比可得答案.【详解】解:(1)八年级学生食品的热量处于A等级人数20(人),∴八年级学生食品的热量的中位数位于B等级的第6、7两个数据,即77、79,∴a=;九年级20名学生食品的热量出现最多是85,共有4次,∴a=85;故答案为:78,85;(2)九年级学生食品热量更高. 理由如下:由样本数据可得,八、九年级学生食品热量的平均数均为79,而八年级学生食品热量的中位数78,九年级学生食品热量的中位数79,79>78,所以九年级学生食品热量更高;(3)由样本数据可得,八年级学生的食品热量为A等级的有4人,占比﹔九年级学生的食品热量为A等级的有6人,占比.则两个年级共有( 人).【点睛】本题考查了中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.3、(1)224,177,170,补全条形统计图见解析;(2)甲食堂较好,理由见解析;(3)甲食堂每天中午大约准备844名同学的午餐.【分析】(1)利用中位数,众数,极差的定义分别求解,求出乙食堂的“B组”的频数才能补全频数分布直方图;(2)从平均数的角度比较得出结论;(3)用样本估算总体即可.【详解】解:(1)甲食堂20天的所有人数中位数是第10、11个数据,∴a=224,177人的有3天,天数最多,∴b=177,乙食堂20天的人数数据中最少人数为120人,A等级的数据为278,290,260,∴c=290-120=170;∵20-3-7-4=6,∴补全乙食堂的人数数据条形统计图如图:故答案为:224,177,170;(2)甲食堂较好,理由:甲食堂就餐人数的平均数比乙食堂的高;(3)1600×=844(名),故北关中学甲食堂每天中午大约准备844名同学的午餐.【点睛】本题考查中位数、众数、极差以及频数分布直方图,理解中位数、众数、极差的意义,掌握频数分布直方图的意义是正确解答的关键.4、(1)图见解析,36;(2);(3)估计最想去景点的学生人数为360人.【分析】(1)先根据景点的条形统计图和扇形统计图信息求出调查的学生总人数,从而可得最想去景点的学生人数,由此补全条形统计图即可;再利用乘以最想去景点的学生所占百分比即可得其圆心角的度数;(2)根据众数的定义(一组数据中出现次数最多的那个数据)求出所抽取的部分学生的众数,由此即可得出答案;(3)利用1800乘以最想去景点的学生所占百分比即可得.【详解】解:(1)调查的学生总人数为(人),则最想去景点的学生人数为(人),补全条形统计图如下:,即扇形统计图中表示最想去景点的扇形圆心角的度数为36度,故答案为:36;(2)因为最想去景点的学生人数最多,所以所抽取的部分学生的众数落在组内,故答案为:;(3)(人),答:估计最想去景点的学生人数为360人.【点睛】本题考查了条形统计图和扇形统计图的信息关联、众数等知识点,熟练掌握统计调查的相关知识是解题关键.5、(1)见解析;(2)选择甲选手参加比赛,理由见解析【分析】(1)分别根据众数、中位数和极差的概念填充表格即可;(2)根据方差即可确定选择哪位选手参加比赛.【详解】解:(1)根据表中甲、乙两名选手的成绩可知甲、乙的成绩的众数均为98;将乙选手的成绩从小到大排列可得:85,89,91,96,96,97,97,98,98,98,∴乙的中位数为:;乙选手成绩的极差为:98-85=13.填充表格如下所示: 平均数众数中位数方差极差甲94.5989616.6512乙94.59896.518.6513(2)∵S甲2<S乙2,∴甲的成绩比较稳定,∴选择甲选手参加比赛.【点睛】本题考查了众数、中位数和极差的概念及方差在实际生活中的应用,利用方差可以确定数据的波动大小,也就是数据的稳定性,由此即可解决问题;同时该题的计算量比较大,要注意细心运算.
相关试卷
这是一份数学八年级下册第十七章 方差与频数分布综合与测试课后复习题,共23页。试卷主要包含了一组数据,在一次射击训练中,甲,2020年某果园随机从甲,下列说法正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第十七章 方差与频数分布综合与测试综合训练题,共20页。试卷主要包含了在一次投篮训练中,甲等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习,共22页。试卷主要包含了新型冠状病毒肺炎等内容,欢迎下载使用。