初中数学沪科版九年级下册第26章 概率初步综合与测试达标测试
展开
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试达标测试,共21页。试卷主要包含了下列事件中,是必然事件的是,下列事件是必然事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是( )A. B. C. D.2、下列事件中,是必然事件的是( )A.同位角相等B.打开电视,正在播出特别节目《战疫情》C.经过红绿灯路口,遇到绿灯D.长度为4,6,9的三条线段可以围成一个三角形.3、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:摸球的次数200300400100016002000摸到黑球的频数14218626066810641333摸到黑球的频率0.71000.62000.65000.66800.66500.6665该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有( )个.A.4 B.3 C.2 D.14、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是( )A.② B.①③ C.②③ D.①②③5、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是( )A.0.560 B.0.580 C.0.600 D.0.6206、下列事件中,是必然事件的是( )A.如果a2=b2,那么a=bB.车辆随机到达一个路口,遇到红灯C.2021年有366天D.13个人中至少有两个人生肖相同7、下列事件是必然事件的是( )A.同圆中,圆周角等于圆心角的一半B.投掷一枚均匀的硬币100次,正面朝上的次数为50次C.参加社会实践活动的367个同学中至少有两个同学的生日是同一天D.把一粒种子种在花盆中,一定会发芽8、在一只暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是( )A.15 B.12 C.9 D.49、有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙去开任意的一把锁,一次打开锁的概率为( )A. B. C. D.10、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红—黑的概率是________.2、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是___________.3、有6张除数字外无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取一张记作,放回并混合在一起,再随机抽一张记作,组成有序实数对,则点在直线上的概率为______4、小明和小强玩“石头、剪刀、布”游戏,按照“石头胜剪刀,剪刀胜布,布胜石头,相同算平局”的规则,两人随机出手一次,平局的概率为______.5、从﹣2,﹣1,1,3,5五个数中随机选取一个数作为二次函数y=ax2+x﹣3中a的值,则二次函数图象开口向上的概率是 _____.三、解答题(5小题,每小题10分,共计50分)1、为了更好地宣传垃圾分类,某校九(1)班学生成立了一个“垃圾分类”宣传小组,其中男生2人,女生3人.(1)若从这5人中选1人进社区宣传,恰好选中女生的概率是 ;(2)若从这5人中选2人进社区宣传,请用树状图或列表法求恰好选中一男一女的概率.2、为了引导青少年学党史,某中学举行了“献礼建党百年”党史知识竞赛活动,将成绩划分为四个等级:A(优秀)、B(优良)、C(合格)、D(不合格).小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(部分信息未给出):(1)小李共抽取了 名学生的成绩进行统计分析,扇形统计图中“优秀”等级对应的扇形圆心角度数为 ,请补全条形统计图;(2)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数;(3)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率.3、如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .(2)若甲、乙均可在本层移动.①黑色方块所构拼图是中心对称图形的概率是 .②用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.4、防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了甲、乙、丙三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从乙测温通道通过的概率是________;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.5、小明每天骑自行车.上学,都要通过安装有红、绿灯的4个十字路口.假设每个路口红灯和绿灯亮的时间相同.(1)小明从家到学校,求通过前2个十字路口时都是绿灯的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)(2)小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为 .(请直接写出答案) -参考答案-一、单选题1、D【分析】先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可.【详解】解:列树状图如下所示: 由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,∴P小张从不同的出入口进出的结果数,故选D.【点睛】本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率.2、D【分析】根据必然事件的概念即可得出答案.【详解】解:∵同位角不一定相等,为随机事件,∴A选项不合题意,∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,∴B选项不合题意,∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件, ∴C选项不合题意,∵4+6>9,∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.∴D选项符合题意,故选:D.【点睛】本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.3、C【分析】该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案.【详解】解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,估计摸出黑球的概率为0.667,则摸出绿球的概率为,袋子中球的总个数为,由此估出黑球个数为,故选:C.【点睛】本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.4、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案.【详解】解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;故选:C.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.5、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:∵由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,∴这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.6、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2=b2,那么,原说法是随机事件,故A不符合题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D.【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.7、C【分析】直接利用随机事件以及不可能事件、必然事件的定义分析即可得答案.【详解】A、同圆中,圆周角等于圆心角的一半,是随机事件,不符合题意;B、投掷一枚均匀的硬币100次,正面朝上的次数为50次,是随机事件,不符合题意;C、参加社会实践活动的367个同学中至少有两个同学的生日是同一天,是必然事件,符合题意;D、把一粒种子种在花盆中,一定会发芽,是随机事件,不符合题意.故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、A【分析】由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n.【详解】∵摸到红球的频率稳定在20%,∴摸到红球的概率为20%,而a个小球中红球只有3个,∴摸到红球的频率为.解得.故选A.【点睛】此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.9、B【分析】根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.【详解】解:列表得: 锁1锁2钥匙1(锁1,钥匙1)(锁2,钥匙1)钥匙2(锁1,钥匙2)(锁2,钥匙2)钥匙3(锁1,钥匙3)(锁2,钥匙3)由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则P(一次打开锁).故选:B.【点睛】本题考查列表法与树状图法求概率,注意掌握概率=所求情况数与总情况数之比是解题的关键.10、C【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,∴随机抽取一个球是黄球的概率是.故选C.【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.二、填空题1、【分析】根据题意列出表格,可得6种等可能结果,其中一红—黑的有4种,再利用概率公式,即可求解.【详解】解:根据题意列出表格如下: 黑球红球1红球2黑球 红球1、黑球红球2、黑球红球1黑球、红球1 红球2、红球1红球2黑球、红球2红球1、红球2 得到6种等可能结果,其中一红—黑的有4种,所以两次摸出的球是一红—黑的概率是 .故答案为:【点睛】本题主要考查了求概率,能够利用画树状图或列表格的方法解答是解题的关键.2、c>a>b【分析】根据概率公式分别求出各事件的概率,故可求解.【详解】依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,∵>>∴a,b,c的大小关系是c>a>b故答案为:c>a>b.【点睛】本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.3、【分析】画树状图表示所有等可能的结果,再计算点在直线上的概率.【详解】解:画树状图为:共有36种机会均等的结果,其中组成有序实数对,则点在直线上的有4种,所以点在直线上的概率为,故答案为:.【点睛】本题考查用树状图或列表法表示概率,是重要考点,难度较小,掌握相关知识是解题关键.4、【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两人平局的情况,再利用概率公式即可求得答案.【详解】解:小明和小强玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小强平局的概率为:,故答案为:.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5、【分析】二次函数图象开口向上得出a>0,从所列5个数中找到a>0的个数,再根据概率公式求解可得.【详解】解:∵从﹣2,﹣1,1,3,5五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1,3,5这3种结果,∴该二次函数图象开口向上的概率为,故答案为:.【点睛】本题主要考查概率公式及二次函数的性质,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.三、解答题1、(1);(2)【分析】(1)直接由概率公式求解即可;(2)画树状图,共有20种等可能的结果,恰好选到一男一女的结果有12种,再根据概率公式求解即可.【详解】解:(1)根据题意,∵男生2人,女生3人,∴从这5人中选1人进社区宣传,恰好选中女生的概率是:;故答案为:;(2)画树状图如图:共有20种等可能的结果,恰好选到一男一女的结果有12种,∴恰好选到一男一女的概率为:.【点睛】本题考查了利用列表或树状图求概率;用的的知识点为:概率=所求情况数与总情况数之比.2、(1)100,126°,条形统计图见解析;(2)700;(3)【分析】(1)根据C等级的人数和所占比可求出抽取的总人数,用A等级的人数除以抽取的总人数乘以360°可得A等级对应扇形圆心角的度数,用抽取的总人数乘以B等级所占的百分比得B等级的人数,用抽取的总人数减去A、B、C等级的人数得出D等级人数,即可补全条形统计图;(2)用2000乘以A等级所占的百分比即可估计出成绩“优秀”的学生人数;(3)由(1)得不合格有5人,故由3男2女,用列表法即可求回访到一男一女的概率.【详解】(1)C等级的人数和所占比可得抽取的总人数为:(名),∴“优秀”等级对应的扇形圆心角度数为:,B等级的人数为:(名),D等级的人数为:(名),∴补全条形统计图如下所示:(2)(名),∴该校竞赛成绩“优秀”的学生人数为700名;(3)∵抽取不及格的人数有5名,其中有2名女生,∴有3名男生,设3名男生分别为,,,2名女生分别为,,列表格如下所示: ∴总的结果有20种,一男一女的有12种,∴回访到一男一女的概率为.【点睛】本题考查统计与概率,其中涉及到条形统计图与扇形统计图相关联问题,用样本估计总体以及用列举法求概率,读懂条形统计图和扇形统计图所给出的条件是解题的关键.3、(1);(2)①;②.【分析】(1)直接由概率公式求解即可;(2)①黑色方块所构拼图中是中心对称图形有两种情形,由概率公式求解即可;②画树状图,再由概率公式求解即可.【详解】解:(1)若乙固定在E处,黑色方块甲,可在方格A、B、C中移动,且当在A、B处时,黑色方块构成的拼图是轴对称图形所以移动甲后黑色方块构成的拼图是轴对称图形的概率是;(2)①甲、乙在本层移动,一共有 种情况,其中黑色方块所构拼图中是中心对称图形有两种情形:a、甲在B处,乙在F处;b、甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是;②画树状图如图:由树状图可知,共有9个等可能的结果,黑色方块所构拼图是轴对称图形的结果有5个,∴黑色方块所构拼图是轴对称图形的概率=.【点睛】本题考查了列表法与树状图法、轴对称图形、中心对称图形等知识;熟练掌握轴对称图形、中心对称图形,正确画出树状图是解题的关键.4、(1);(2)【分析】(1)根据题意直接利用概率公式求解即可得出答案;(2)由题意先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式进行计算可得.【详解】解:(1)小明从乙测温通道通过的概率是,故答案为:;(2)列表格如下: 甲乙丙甲甲,甲乙,甲丙,甲乙甲,乙乙,乙丙,乙C甲,丙乙,丙丙,C由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,所以小明和小丽从同一个测温通道通过的概率为=.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.5、(1),见解析(2)【解析】(1)列表如下第一个十字路口\第二个红灯绿灯红灯红红红绿绿灯绿红绿绿∵共有4种等可能情形,满足条件的有1种.∴通过前2个十字路口时都是绿灯的概率.(2)画树状图如图,表示红灯,表示绿灯,∵共有16种等可能情形,满足条件的有11种.小明从家到学校,通过这4个十字路口时至少有2个绿灯的概率为故答案为:【点睛】本题考查了列表法或画树状图法求概率,掌握列表法或画树状图法是解题的关键.
相关试卷
这是一份2021学年第26章 概率初步综合与测试精练,共18页。试卷主要包含了下列说法中,正确的是,下列事件中,属于必然事件的是,下列四幅图的质地大小等内容,欢迎下载使用。
这是一份初中数学第26章 概率初步综合与测试同步练习题,共19页。试卷主要包含了下列说法中正确的是,下列事件中是不可能事件的是,下列事件是必然事件的是,下列说法正确的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试练习,共19页。试卷主要包含了下列事件是必然发生的事件是,有两个事件,事件,下列说法正确的是等内容,欢迎下载使用。