2021学年第26章 概率初步综合与测试精练
展开沪科版九年级数学下册第26章概率初步月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、书架上有本小说、本散文,从中随机抽取本恰好是小说的概率是( )
A. B. C. D.
2、下列成语描述的事件为随机事件的是( )
A.偷天换日 B.水涨船高 C.守株待兔 D.旭日东升
3、成语“守株待兔”描述的这个事件是( )
A.必然事件 B.确定事件 C.不可能事件 D.随机事件
4、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )
A. B. C. D.1
5、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是( )
移植总数n | 400 | 1500 | 3500 | 7000 | 9000 | 14000 |
成活数m | 369 | 1335 | 3203 | 6335 | 8073 | 12628 |
成活的频率 | 0.923 | 0.890 | 0.915 | 0.905 | 0.897 | 0.902 |
A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率
B.可以用试验次数累计最多时的频率作为概率的估计值
C.由此估计这种幼苗在此条件下成活的概率约为0.9
D.如果在此条件下再移植这种幼苗20000株,则必定成活18000株
6、下列说法中,正确的是( )
A.“射击运动员射击一次,命中靶心”是必然事件
B.事件发生的可能性越大,它的概率越接近1
C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖
D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得
7、下列事件中,属于必然事件的是( )
A.射击运动员射击一次,命中10环
B.打开电视,正在播广告
C.投掷一枚普通的骰子,掷得的点数小于10
D.在一个只装有红球的袋中摸出白球
8、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )
A. B. C. D.1
9、下表记录了一名球员在罚球线上投篮的结果:
投篮次数 | 50 | 100 | 150 | 200 | 250 | 400 | 500 | 800 |
投中次数 | 28 | 63 | 87 | 122 | 148 | 242 | 301 | 480 |
投中频率 | 0.560 | 0.630 | 0.580 | 0.610 | 0.592 | 0.605 | 0.602 | 0.600 |
根据频率的稳定性,估计这名球员投篮一次投中的概率约是( )
A.0.560 B.0.580 C.0.600 D.0.620
10、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球( )个.
A.12 B.15 C.18 D.54
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、不透明的袋子里装有一个黑球,两个红球,这些球除颜色外无其它差别,从袋子中取出一个球,不放回,再取出一个球,记下颜色,两次摸出的球是一红—黑的概率是________.
2、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.
3、一个盒子中装有标号为,,,的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为______.
4、从,0,1,2这四个数中任取一个数,作为关于x的方程中a的值,则该方程有实数根的概率为_________.
5、某商场开展购物抽奖活动,抽奖箱内有标号分别为1、2、3、4、5、6、7、8、9、10十个质地、大小相同的小球,顾客从中任意摸出一个球,摸出的球的标号是3的倍数就得奖,顾客得奖概率是______.
三、解答题(5小题,每小题10分,共计50分)
1、国庆期间,某电影院上映了《长津湖》《我和我父辈》《五个扑水的少年》三部电影.甲、乙两同学从中选取一部电影观看.求甲、乙两同学选取同一部电影的概率.
2、放假期间,小明和小华准备到白马湖度假区(记为A)、金湖水上森林公园(记为B)、盱眙铁山寺国家森林公园(记为C)的其中一个景点去游览,他们各自在这三个景点中任选一个,每个景点都被选中的可能性相同.
(1)小明选择去白马湖度假区的概率是 .
(2)用树状图或列表的方法求小明和小华分别去不同景点游览的概率.
3、在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.
(1)从中随机摸出一个小球,上面的数字不小于2的概率为 .
(2)从中随机摸出一球不放回,再随机摸出一球,请用列表或画树状图的方法,求两次摸出小球上的数字和恰好是奇数的概率.
4、某省高考采用“3+1+2”模式:“3”是指语文、数学、英语3科为必选科目,“1”是指在物理、历史2科中任选1科,“2”是指在思想政治、化学、生物、地理4科中任选2科.
(1)假定在“1”中选择历史,在“2”中已选择地理,则选择生物的概率是________;
(2)求同时选择物理、化学、生物的概率.
5、某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲.乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表).
甲种品牌化妆品 | 球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 6 | 12 | 6 | |
乙种品牌化妆品 | 球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 12 | 6 | 12 |
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;
(2)如果一个顾客当天在本店购买满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.
-参考答案-
一、单选题
1、D
【分析】
概率=所求情况数与总情况数之比,再分析可得:总的情况数有5种,而随机抽取刚好是小说的情况数有3种,利用概率公式可得答案.
【详解】
解:书架上有本小说、本散文,共有本书,
从中随机抽取本恰好是小说的概率是;
故选:D.
【点睛】
本题考查的是简单随机事件的概率,掌握“概率公式求解简单随机事件的概率”是解本题的关键.
2、C
【分析】
根据随机事件的定义:在一定条件下,可能发生,也可能不发生的事件,叫做随机事件,进行求解即可.
【详解】
解:A、偷天换日,是不可能发生的,不是随机事件,不符合题意;
B、水涨必定船高,是必然会发生,不是随机事件,不符合题意;
C、守株待兔,可能发生,也可能不发生,是随机事件,符合题意;
D、旭日东升,是必然会发生的,不是随机事件,不符合题意;
故选C.
【点睛】
本题主要考查了随机事件的定义,熟知定义是解题的关键.
3、D
【分析】
根据必然事件、不可能事件、随机事件的概念进行解答即可.
【详解】
解:“守株待兔”是随机事件.
故选D.
【点睛】
本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4、C
【分析】
先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.
【详解】
解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;
则P(中心对称图形)=;
故选:C.
【点睛】
本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.
5、D
【分析】
根据频率估计概率逐项判断即可得.
【详解】
解:A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;
B.可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;
C.由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;
D.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;
故选:D.
【点睛】
本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键.
6、B
【分析】
根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.
【详解】
解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;
事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;
某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;
图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.
故选择B.
【点睛】
本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.
7、C
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解:A、射击运动员射击一次,命中10环,是随机事件;
B、打开电视,正在播广告,是随机事件;
C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;
D、在一个只装有红球的袋中摸出白球,是不可能事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
8、C
【分析】
根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;
【详解】
根据已知图形可得,中心对称图形是
,,,
共有3个,
∴抽到的图案是中心对称图形的概率是.
故选C.
【点睛】
本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.
9、C
【分析】
根据频率估计概率的方法并结合表格数据即可解答.
【详解】
解:∵由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,
∴这名球员在罚球线上投篮一次,投中的概率为0.600.
故选:C.
【点睛】
本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.
10、A
【分析】
根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可.
【详解】
解:设有红色球x个,
根据题意得:,
解得:x=12,
经检验,x=12是分式方程的解且符合题意.
故选:
【点睛】
本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数.
二、填空题
1、
【分析】
根据题意列出表格,可得6种等可能结果,其中一红—黑的有4种,再利用概率公式,即可求解.
【详解】
解:根据题意列出表格如下:
| 黑球 | 红球1 | 红球2 |
黑球 |
| 红球1、黑球 | 红球2、黑球 |
红球1 | 黑球、红球1 |
| 红球2、红球1 |
红球2 | 黑球、红球2 | 红球1、红球2 |
|
得到6种等可能结果,其中一红—黑的有4种,
所以两次摸出的球是一红—黑的概率是 .
故答案为:
【点睛】
本题主要考查了求概率,能够利用画树状图或列表格的方法解答是解题的关键.
2、8
【分析】
首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.
【详解】
解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,
∴摸出红球的概率为0.2,
由题意,,
解得:,
经检验,是原方程的解,且符合题意,
故答案为:8.
【点睛】
本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键.
3、
【分析】
根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.
【详解】
解:根据题意画图如下:
共有12种等可能的情况数,其中摸出的小球标号之和大于5的有4种,
则摸出的小球标号之和大于5的概率为.
故答案为:.
【点睛】
本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
4、
【分析】
根据一元二次方程的定义,可得,根据一元二次方程的判别式的意义得到,可得,然后根据概率公式求解.
【详解】
解:∵当且,一元二次方程有实数根
∴且
从,0,1,2这四个数中任取一个数,符合条件的结果有
所得方程有实数根的概率为
故答案为:
【点睛】
本题考查了列举法求概率,一元二次方程的定义,一元二次方程根的判别式,掌握以上知识是解题的关键.
5、
【分析】
结合题意,首先分析3的倍数的数量,再根据概率公式的性质计算,即可得到答案.
【详解】
根据题意,3的倍数有:3,6,9,共3个数
∴摸出的球的标号是3的倍数的概率是:,即顾客得奖概率是:
故答案为:.
【点睛】
本题考查了概率的知识;解题的关键是熟练掌握概率公式,从而完成求解.
三、解答题
1、
【分析】
通过画树状图可知:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,再由概率公式求解即可.
【详解】
解:把《长津湖》《我和我父辈》《五个扑水的少年》三部电影分别记为A、B、C,
画树状图如下:
共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,
∴甲、乙两同学选取同一部电影的概率为.
【点睛】
本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率 =所求情况数与总情况数之比.
2、(1);(2).
【分析】
(1)直接利用概率公式求解可得.
(2)先画出树状图,根据树状图可以求得所有等可能的结果以及他们分别去不同景点游览的情况,再利用概率公式即可求得答案.
【详解】
解:(1)小明选择去白云山游览的概率是;
故答案为:;
(2)画树状图得:
∵共有9种等可能的结果,小明和小华分别去不同景点游览的情况有6种结果,
∴小明和小华分别去不同景点游览的概率为.
【点睛】
此题考查随机事件的概率计算,涉及到树状图法表示概率的方法.
3、(1);(2)
【分析】
(1)列表确定出所有等可能的情况数,找出小球上写的数字不小于2的情况数,即可求出所求概率;
(2)列表确定出所有等可能的情况数,找出两次摸出小球上的数字和恰好是奇数的情况数,即可求出所求概率.
【详解】
解:(1)从中随机摸出一个小球,小球上写的数字所有等可能情况有:1,2,3,4,共4种,
其中数字不小于2的情况有:2,3,4,共3种,
则P(小球上写的数字不小于2)=;
故答案为:;
(2)根据题意列表得:
| 1 | 2 | 3 | 4 |
1 | ﹣﹣﹣ | (1,2) | (1,3) | (1,4) |
2 | (2,1) | ﹣﹣﹣ | (2,3) | (2,4) |
3 | (3,1) | (3,2) | ﹣﹣﹣ | (3,4) |
4 | (4,1) | (4,2) | (4,3) | ﹣﹣﹣ |
所有等可能的数有12种,两次摸出小球上的数字和恰好是奇数的情况有8种,
则P(两次摸出小球上的数字和恰好是奇数)==.
故答案为:
【点睛】
本题考查了概率公式,学会利用列表法与树状图法求随机事件的概率是解本题的关键.
4、
(1)
(2)
【分析】
(1)直接根据概率公式即可得出答案;
(2)根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.
(1)
解:在“2”中已选择了地理,从剩下的化学、生物,思想品德三科中选一科,
因此选择生物的概率为.
故答案为:;
(2)
解:用树状图表示所有可能出现的结果如下:
共有12种等可能的结果数,其中选中“化学”“生物”的有2种,
则.
在“1”中选择物理的概率,
同时选择物理、化学、生物的概率.
故答案为:.
【点睛】
本题考查的是用列表法或树状图法求概率,解题的关键是掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.
5、
(1)摇出一红一白的概率=
(2)选择甲品牌化妆品,理由见解析
【分析】
(1)让所求的情况数除以总情况数即为所求的概率;
(2)算出相应的平均收益,比较即可.
(1)
解:树状图为:
∴一共有6种情况,摇出一红一白的情况共有4种,
摇出一红一白的概率=;
(2)
(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,
∴甲品牌化妆品获礼金券的平均收益是:×6+×12+×6=10元.
乙品牌化妆品获礼金券的平均收益是:×12+×6+×12=8元.
∴选择甲品牌化妆品.
【点睛】
本题主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
初中数学沪科版九年级下册第26章 概率初步综合与测试达标测试: 这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试达标测试,共21页。试卷主要包含了下列事件中,是必然事件的是,下列事件是必然事件的是等内容,欢迎下载使用。
初中数学第26章 概率初步综合与测试同步练习题: 这是一份初中数学第26章 概率初步综合与测试同步练习题,共19页。试卷主要包含了下列说法中正确的是,下列事件中是不可能事件的是,下列事件是必然事件的是,下列说法正确的是等内容,欢迎下载使用。
沪科版九年级下册第26章 概率初步综合与测试课时练习: 这是一份沪科版九年级下册第26章 概率初步综合与测试课时练习,共20页。试卷主要包含了下列说法正确的是,以下事件为随机事件的是等内容,欢迎下载使用。