![2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题攻克试题第1页](http://img-preview.51jiaoxi.com/2/3/12707485/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题攻克试题第2页](http://img-preview.51jiaoxi.com/2/3/12707485/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题攻克试题第3页](http://img-preview.51jiaoxi.com/2/3/12707485/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第十三章 相交线 平行线综合与测试一课一练
展开
这是一份数学七年级下册第十三章 相交线 平行线综合与测试一课一练,共32页。试卷主要包含了如图,已知,,平分,则,下列说法中正确的是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法:
①和为180°且有一条公共边的两个角是邻补角;
②过一点有且只有一条直线与已知直线垂直;
③同位角相等;
④经过直线外一点,有且只有一条直线与这条直线平行,
其中正确的有( )
A.0个 B.1个 C.2个 D.3个
2、如图,直线b、c被直线a所截,则与是( )
A.对顶角 B.同位角 C.内错角 D.同旁内角
3、如图,能与构成同位角的有( )
A.4个 B.3个 C.2个 D.1个
4、如图所示,给出了过直线外一点P作已知直线l的平行线的方法,其依据是( ).
A.同位角相等,两直线平行. B.内错角相等,两直线平行.
C.同旁内角互补,两直线平行. D.以上都不对.
5、如图,已知,,平分,则( )
A.32° B.60° C.58° D.64°
6、下列说法中正确的是( )
A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
7、一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .
A.第一次向左拐30°,第二次向右拐30°.
B.第一次向右拐50°,第二次向左拐130°.
C.第一次向左拐50°,第二次向左拐130°.
D.第一次向左拐50°,第二次向右拐130°.
8、如果两个角的一边在同一直线上,另一边互相平行,则这两个角( )
A.相等 B.互补 C.互余 D.相等或互补
9、如图,下列条件能判断直线l1//l2的有( )
①;②;③;④;⑤
A.1个 B.2个 C.3个 D.4个
10、如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C'、D'.若∠DEF=α,用含α的式子可以将∠C'FG表示为( )
A.2α B.90°+α C.180°﹣α D.180°﹣2α
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示,过点P画直线a的平行线b的作法的依据是___________.
2、如图,把一张长方形的纸条按如图那样折叠后,若量得∠DBA=40°,则∠ABC的度数为 _____度.
3、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为 _____.
4、已知三条不同的直线a,b,c在同一平面内,下列四个命题:
①如果ab,a⊥c,那么b⊥c;
②如果ba,ca,那么bc;
③如果b⊥a,c⊥a,那么b⊥c;
④如果b⊥a,c⊥a,那么bc.
其中正确的是__.(填写序号)
5、如图,直线AB,CD相交于点O, 过O点作EF⊥AB,若∠1=35º,则∠2=_____ º.
三、解答题(10小题,每小题5分,共计50分)
1、已知:如图,中,点、分别在、上,交于点, ,.
(1)求证:;
(2)若平分,,求的度数.
2、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A= ( ).
∴AB∥ ( ).
又∵∠1=∠2(已知),
∴AB∥CD ( ).
∴EF∥ ( ).
∴∠FDG=∠EFD ( ).
3、如图,在8×6的正方形网格中,每个小正方形的顶点称为格点,点D是∠ABC的边BC上的一点,点M是∠ABC内部的一点,点A、B、C、D、M均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:
(1)过点M画BC的平行线MN交AB于点N;
(2)过点D画BC的垂线DE,交AB于点E;
(3)点E到直线BC的距离是线段 的长度.
4、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.
阅读下面的解答过程,并填括号里的空白(理由或数学式).
解:∵AB∥DC( ),
∴∠B+∠DCB=180°( ).
∵∠B=( )(已知),
∴∠DCB=180°﹣∠B=180°﹣50°=130°.
∵AC⊥BC(已知),
∴∠ACB=( )(垂直的定义).
∴∠2=( ).
∵AB∥DC(已知),
∴∠1=( )( ).
∵AC平分∠DAB(已知),
∴∠DAB=2∠1=( )(角平分线的定义).
∵AB∥DC(己知),
∴( )+∠DAB=180°(两条直线平行,同旁内角互补).
∴∠D=180°﹣∠DAB= .
5、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
(基础问题)如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
证明:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD( )
∵MN∥AB,
∴∠A=( )( )
∵MN∥CD,
∴∠D= ( )
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
(类比探究)如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
(应用拓展)如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.
6、如图,,P为,之间的一点,已知,,求∠1的度数.
7、按要求画图,并回答问题:
如图,平面内有三个点A,B,C.
根据下列语句画图:
(1)画直线AB;
(2)射线BC;
(3)延长线段AC到点D,使得;
(4)通过画图、测量,点B到点D的距离约为______cm(精确到0.1);
(5)通过画图、测量,点D到直线AB的最短距离约为______cm(精确到0.1).
8、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.
(1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;
(2)当点E落在直线AC上时,直接写出∠BAD的度数;
(3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数.
9、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣ (邻补角定义)
=180°﹣ °
= °
∵OC平分∠AOF(已知)
∴∠AOC∠AOF( )
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC( )
=180°﹣90°﹣ °
= °
10、如图,在中,平分交于D,平分交于F,已知,求证:.
-参考答案-
一、单选题
1、B
【分析】
根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.
【详解】
解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;
②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;
③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;
④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;
其中正确的有④一共1个.
故选择B.
【点睛】
本题考查基本概念的理解,掌握基本概念是解题关键.
2、B
【分析】
根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
【详解】
∠1与∠2是同位角
故选:B
【点睛】
本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
3、B
【分析】
根据同位角的定义判断即可;
【详解】
如图,与能构成同位角的有:∠1,∠2,∠3.
故选B.
【点睛】
本题主要考查了同位角的判断,准确分析判断是解题的关键.
4、A
【分析】
由作图可得同位角相等,根据平行线的判定可作答.
【详解】
解:由图形得,有两个相等的同位角,所以依据为:同位角相等,两直线平行.
故选:A.
【点睛】
本题考查的是作平行线,熟知过直线外一点,作已知直线的平行线的方法和平行线的判定定理是解答此题的关键.
5、D
【分析】
先根据平行线的性质(两直线平行,内错角相等),可得∠ADB=∠B,再利用角平分线的性质可得:∠ADE=2∠ADB=64°,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案.
【详解】
解:∵AD∥BC,∠B=32°,
∴∠ADB=∠B=32° .
∵DB平分∠ADE,
∴∠ADE=2∠ADB=64°,
∵AD∥BC,
∴∠DEC=∠ADE=64°.
故选:D.
【点睛】
题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系.
6、B
【分析】
根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
【详解】
解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
B.两点之间的所有连线中,线段最短,正确;
C.相等的角不一定是对顶角,故不符合题意;
D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
故选:B.
【点睛】
本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
7、A
【分析】
根据题意分析判断即可;
【详解】
由第一次向左拐30°,第二次向右拐30°可得转完两次后相当于在原方向上转过了,和原来方向相同,故A正确;
第一次向右拐50°,第二次向左拐130°可得转完两次后相当于在原方向上左拐,故B错误;
第一次向左拐50°,第二次向左拐130°可得转完两次后相当于在原方向上右拐,故C错误;
第一次向左拐50°,第二次向右拐130°可得转完两次后相当于在原方向上右拐,故D错误;
综上所述,符合条件的是A.
故选:A.
【点睛】
本题主要考查了平行的判定与性质,准确分析判断是解题的关键.
8、D
【分析】
根据平行线的性质,结合图形解答即可.
【详解】
如图,当AE∥BD时,∠EAB与∠DBC符合题意,
∴∠EAB=∠DBC;
如图,当AE∥BD时,∠EAF与∠DBC符合题意,
∵∠EAB+∠EAF=180°,∠EAB=∠DBC,
∴∠DBC +∠EAF=180°,
故选D.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质,灵活运用属性结合是解题的关键.
9、D
【分析】
根据平行线的判定定理进行依次判断即可.
【详解】
①∵∠1,∠3互为内错角,∠1=∠3,∴;
②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
③∠4,∠5互为同位角,∠4=∠5,∴;
④∠2,∠3没有位置关系,故不能证明 ,
⑤,,
∴∠1=∠3,
∴,
故选D.
【点睛】
此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
10、D
【分析】
由平行线的性质得,,由折叠的性质得,计算即可得出答案.
【详解】
∵四边形ABCD是矩形,
∴,
∴,,
∵长方形纸带沿EF折叠,
∴,
∴.
故选:D.
【点睛】
本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键.
二、填空题
1、内错角相等,两直线平行
【分析】
根据平行线的判定方法解决问题即可.
【详解】
解:由作图可知,
,
(内错角相等两直线平行),
故答案为:内错角相等,两直线平行.
【点睛】
本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.
2、70
【分析】
由∠DBA的度数可知∠ABE度数,再根据折叠的性质可得∠ABC=∠EBC=∠ABE即可.
【详解】
解:延长DB到点E,如图:
∵∠DBA=40°,
∴∠ABE=180°﹣∠DBA=180°﹣40°=140°,
又∵把一张长方形的纸条按如图那样折叠,
∴∠ABC=∠EBC=∠ABE=70°,
故答案为:70.
【点睛】
本题主要考查了折叠的性质和邻补角的定义,属于基础题目,得到∠ABC=∠ABE是解题的关键.
3、
【分析】
先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.
【详解】
解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,
∴∠AOC=150°22′,
∵OD平分∠AOC,
∴,
故答案为:.
【点睛】
本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.
4、①②④
【分析】
根据两直线的位置关系一一判断即可.
【详解】
解:在同一个平面内,①如果ab,a⊥c,那么b⊥c,正确;
②如果ba,ca,那么bc,正确;
③如果b⊥a,c⊥a,那么bc,错误;
④如果b⊥a,c⊥a,那么bc,正确;
故答案为:①②④.
【点睛】
本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.
5、55
【分析】
由已知可得,,进而根据,∠1=35º,即可求得.
【详解】
EF⊥AB,
,
,∠1=35º,
故答案为:55
【点睛】
本题考查了两条相交线所成的角,垂直的定义,平角的定义,掌握垂直的定义是解题的关键.
三、解答题
1、(1)见解析;(2)72°
【分析】
(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;
(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.
【详解】
解:(1)∵,∠2+∠DFE=180°,
∴∠3=∠DFE,
∴EF//AB,
∴∠ADE=∠1,
又∵,
∴∠ADE=∠B,
∴DE//BC,
(2)∵平分,
∴∠ADE=∠EDC,
∵DE//BC,
∴∠ADE=∠B,
∵
∴∠5+∠ADE+∠EDC==180°,
解得:,
∴∠ADC=2∠B=72°,
∵EF//AB,
∴∠2=∠ADC=180°-108°=72°,
【点睛】
本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
2、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
【分析】
利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
【详解】
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A=∠FEC(等量代换),
∴AB∥EF(同位角相等,两直线平行),
又∵∠1=∠2(已知),
∴AB∥CD(内错角相等,两直线平行),
∴EF∥CD(平行于同一条直线的两直线互相平行),
∴∠FDG=∠EFD(两直线平行,内错角相等),
故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
【点睛】
本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
3、(1)见解析;(2)见解析;(3)DE
【分析】
(1)根据平行线的判定条件:同位角相同,两直线平行,进行作图即可;
(2)根据垂线的定义作图即可;
(3)根据点到直线的距离的定义求解即可.
【详解】
解:(1)如图所示,点N即为所求;
(2)如图所示,点E即为所求;
(3)由题意可知:点E到直线BC的距离是线段DE的长度,
故答案为:DE.
【点睛】
本题主要考查了点到直线的距离,平行线的判定,作垂线,画平行线,解题的关键在于能够熟练掌握相关知识进行求解.
4、见解析.
【分析】
先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.
【详解】
解:∵(已知),
∴(两直线平行,同旁内角互补).
∵(已知),
∴.
∵(已知),
∴(垂直的定义).
∴.
∵(已知),
∴(两直线平行,内错角相等).
∵平分(已知),
∴(角平分线的定义).
∵(己知),
∴(两条直线平行,同旁内角互补).
∴.
【点睛】
本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
5、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
【分析】
基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
【详解】
解:基础问题:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD(平行于同一条直线的两条直线平行),
∵MN∥AB,
∴∠A=∠AGM(两直线平行,内错角相等),
∵MN∥CD,
∴∠D=∠DGM(两直线平行,内错角相等),
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
类比探究:如图所示,过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD,
∵MN∥AB,
∴∠A=∠AGM,
∵MN∥CD,
∴∠D=∠DGM,
∴∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
又∵AB∥CD,
∴MN∥CD,PQ∥CD
∵MN∥AB,PQ∥AB,
∴∠BAG=∠AGM,∠BAH=∠AHP,
∵MN∥CD,PQ∥CD,
∴∠CDG=∠DGM,∠CDH=∠DHP,
∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
∴∠GDH=44°,∠DHP=22°,
∴∠CDG=66°,∠AHP=54°,
∴∠DGM=66°,∠BAH=54°,
∵AH平分∠BAG,
∴∠BAG=2∠BAH=108°,
∴∠AGM=108°,
∴∠AGD=∠AGM-∠DGM=42°.
【点睛】
本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
6、30°
【分析】
首先过点P作射线,根据两直线平行,内错角相等,即可求得答案.
【详解】
过点P作射线,如图①.
∵,,
∴.
∴.
∵,∴.
又∵.
∴.
【点睛】
此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.
7、(1)见解析;(2)见解析;(3)见解析;(4)3.5;(5)1.4
【分析】
(1)根据直线定义即可画直线AB;
(2)根据射线定义即可画直线BC;
(3)根据线段定义即可连接AC并延长到点D,使得CD=AC;
(4)通过画图、测量,即可得点B到点D的距离.
(5)通过画图、测量,即可得点D到直线AB的距离.
【详解】
解:(1)如图,直线AB即为所求;
(2)如图,射线BC即为所求;
(3)如图,线段CD即为所画;
(4)通过画图、测量,点B到点D的距离约为3.5cm,
故答案为:3.5;
(5)通过画图、测量,点D到点AB的距离DE约为1.4cm
故答案为:1.4
【点睛】
本题考查了基本作图、直线是向两方无限延伸的,射线是向一方无限延伸的;线段有两个端点、两点间的距离,点到直线间的距离,解决本题的关键是准确作图.
8、(1);(2);(3)的值为:或.
【分析】
(1)先求解 再利用角的和差关系可得答案;
(2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;
(3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.
【详解】
解:(1) ∠BAD=18°,∠EAD=∠BAD,
(2)当落在的下方时,如图,
当落在的上方时,如图,
而
(3)当落在的内部时,如图,
∠CAE:∠BAD=7:4,
当落在的外部时,如图,
∠CAE:∠BAD=7:4,
设则
解得:
综上:的值为:或.
【点睛】
本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.
9、角平分线的定义,平角的定义,
【分析】
先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
【详解】
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣(邻补角定义)
=180°﹣40°
=140°
∵OC平分∠AOF(已知)
∴∠AOC∠AOF(角平分线的定义)
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
=180°﹣90°﹣70°
=20°
故答案为:角平分线的定义,平角的定义,
【点睛】
本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
10、见解析
【分析】
根据∠ADE=∠B可判定DE∥BC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EF∥CD.
【详解】
证明:(已知),
(同位角相等,两直线平行),
(两直线平行,同位角相等),
平分,平分(已知),
,(角平分线的定义),
(等量代换).
(同位角相等,两直线平行).
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时练习,共30页。试卷主要包含了如图,,交于点,,,则的度数是,下列说法,下列说法中正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第十三章 相交线 平行线综合与测试一课一练,共30页。试卷主要包含了下列说法等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共28页。