![2021-2022学年度沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测试试卷(精选含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12707426/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测试试卷(精选含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12707426/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测试试卷(精选含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12707426/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试习题
展开
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试习题,共28页。试卷主要包含了直线m外一点P它到直线的上点A等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )A.S1>S2 B.S1=S2 C.S1<S2 D.不确定2、若直线a∥b,b∥c,则a∥c的依据是( ).A.平行的性质 B.等量代换C.平行于同一直线的两条直线平行. D.以上都不对3、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°4、如图,矩形纸片ABCD沿EF折叠后,∠FEC=30°,则∠AGE的度数为( )A.30° B.60° C.80° D.不能确定5、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )A.77° B.64° C.26° D.87°6、如图,下列选项中,不能得出直线的是( )A.∠1=∠2 B.∠4=∠5 C.∠2+∠4=180° D.∠1=∠37、直线m外一点P它到直线的上点A、B、C的距离分别是6cm、5cm、3cm,则点P到直线m的距离为( )A.3cm B.5cm C.6cm D.不大于3cm8、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )A.30° B.40° C.50° D.60°9、如图所示,直线l1l2,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=52°,那么∠2=( )A.138° B.128° C.52° D.152°10、如图,∠1=∠2,∠3=25°,则∠4等于( )A.165° B.155° C.145° D.135°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____2、如图,于点F,于点D,E是AC上一点,,则图中互相平行的直线______.3、如图,长方形纸片ABCD中AD∥BC,AB∥CD,∠A=90°,将纸片沿EF折叠,使顶点C、D分别落在点C'、D'处,C'E交AF于点G.若∠CEF=68°,则么∠GFD'=______°.4、如图,直线a、b、c分别与直线d、e相交,与∠1构成同位角的角共有________个,和∠l构成内错角的角共有________个,与∠1构成同旁内角的角共有________个.5、如图,四边形ABCD中,AD∥BC,直线l是它的对称轴,∠B=53°,则∠D的大小为______°.三、解答题(10小题,每小题5分,共计50分)1、阅读下面的推理过程,将空白部分补充完整.已知:如图,在△ABC中,FGCD,∠1 = ∠3.求证:∠B + ∠BDE= 180°.解:因为FGCD(已知),所以∠1= .又因为∠1 = ∠3 (已知),所以∠2 = (等量代换).所以BC ( ),所以∠B + ∠BDE = 180°(___________________).2、如图,平面上两点C、D在直线AB的同侧,按下列要求画图并填空. (1)画直线AC;(2)画射线CD;(3)画线段BD;(4)过点D画垂线段DF⊥AB,垂足为F;(5)点D到直线AB的距离是线段 的长.3、补全下列推理过程:如图,,,,试说明.解:,(已知),(垂直的定义).( ). ( ).(已知), (等量代换).( ).4、已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3= ( ).∵∠3=∠4(已知),∴∠4= ( ).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF( ).即∠BAF= .∴∠4=∠BAF.( ).∴AB∥CD( ).4.如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.(1)求∠BOC的度数;(2)试说明OE平分∠AOC.5、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数.6、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.证明:∵CE平分∠BCD(______)∴∠1=_____(_______)∵∠1=∠2=70°(已知)∴∠1=∠2=∠4=70°(________)∴AD∥BC(________)∴∠D=180°-_______=180°-∠1-∠4=40°∵∠3=40°(已知)∴______=∠3∴AB∥CD(_______)7、如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.8、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数9、如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为 _____米.(填具体数值)10、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.(1)写出∠AOF的一个余角和一个补角.(2)若∠BOE=60°,求∠AOD的度数.(3)∠AOF与∠EOF相等吗?说明理由. -参考答案-一、单选题1、B【分析】由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.【详解】解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.故选:B.【点睛】本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.2、C【分析】根据平行公理的推论进行判断即可.【详解】解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,故选:C.【点睛】本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.3、D【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,∴C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.4、B【分析】由翻折变换的性质求出∠GEF的度数,再利用平行线的性质可得出结论.【详解】解:∵AD∥BC,∠FEC=30°,∴∠AGE=∠GEC,由翻折变换的性质可知∠GEF=∠FEC=30°,∴∠AGE=∠GEC=∠GEF+∠FEC=30°+30°=60°.故选:B.【点睛】本题考查了平行线的性质以及折叠的性质,根据平行线的性质找到相等(或互补)的角是关键.5、A【分析】本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.【详解】解:由图可知: AD∥BC∴∠AEG=∠BGD′=26°,即:∠GED=154°,由折叠可知: ∠α=∠FED,∴∠α==77°故选:A.【点睛】本题主要考察的是根据平行得性质进行角度的转化.6、A【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,分别进行分析即可.【详解】解:A、∠1=∠2,不能判断直线,故此选项符合题意;B、根据同位角相等,两直线平行,可判断直线,故此选项不合题意;C、根据同旁内角互补,两直线平行,可判断直线,故此选项不合题意;D、根据内错角相等,两直线平行,可判断直线,故此选项不合题意.故选:A.【点睛】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.7、D【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【详解】解:垂线段最短,点到直线的距离,故选:D.【点睛】本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短.8、D【分析】根据平行线的性质和垂直的定义解答即可.【详解】解:∵BC⊥l3交l1于点B,∴∠ACB=90°,∵∠2=30°,∴∠CAB=180°−90°−30°=60°,∵l1l2,∴∠1=∠CAB=60°.故选:D.【点睛】此题考查平行线的性质,关键是根据平行线的性质解答.9、B【分析】根据两直线平行同位角相等,得出∠1=∠3=52°.再由∠2与∠3是邻补角,得∠2=180°﹣∠3=128°.【详解】解:如图.∵l1//l2,∴∠1=∠3=52°.∵∠2与∠3是邻补角,∴∠2=180°﹣∠3=180°﹣52°=128°.故选:B.【点睛】本题主要考查了平行线的性质、邻补角的定义,熟练掌握平行线的性质、邻补角的定义是解决本题的关键.10、B【分析】设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.【详解】解:设∠4的补角为,如下图所示:∠1=∠2,,,.故选:B.【点睛】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.二、填空题1、【分析】先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.【详解】解:∠EFG+∠EGD=150°,∠EGD=折叠故答案为:.【点睛】本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.2、,【分析】由,,可得再证明可得【详解】解: ,, 故答案为:【点睛】本题考查的是平行线的判定,掌握“在同一平面内,垂直于同一直线的两直线平行”是解本题的关键.3、44【分析】根据平行线的性质和翻折不变性解答.【详解】解:∵ADBC,∴∠DFE=180°−∠CEF=180°−68°=112°,∴∠D′FE=112°,∠GFE=180°−112°=68°,∴∠GFD′=112°−68°=44°.故答案为:44.【点睛】本题考查了平行线的性质和翻折不变性,注意观察图形.4、3 2 2 【分析】根据同位角、内错角、同旁内角的定义判断即可;【详解】如图,与∠1是同位角的是:∠2, ∠3,∠4;与∠1是内错角的是:∠5, ∠6;与∠1是同旁内角的是:∠7,∠8.【点睛】本题主要考查了同位角、内错角、同旁内角的判断,准确分析是解题的关键.5、127【分析】根据轴对称性质得出∠C=∠B=53°,根据平行线性质得出∠C+∠D=180°即可.【详解】解:直线l是四边形ABCD的对称轴,∠B=53°,∴∠C=∠B=53°,∵AD∥BC,∴∠C+∠D=180°,∴∠D=180°-53°=127°.故答案为:127.【点睛】本题考查轴对称性质,平行线性质,求一个角的的补角,掌握轴对称性质,平行线性质,求一个角的的补角.三、解答题1、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【分析】首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.【详解】解:因为FGCD(已知),所以∠1=∠2.又因为∠1 = ∠3 (已知),所以∠2 =∠3(等量代换).所以(内错角相等,两直线平行),所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.2、(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)DF【分析】(1)连接AC并向两端延长即可;(2)连接CD并延长CD即可;(3)连接BD即可;(4)过D作线段DF⊥AB,垂足为F;(5)根据垂线段的长度是点到直线的距离解答即可.【详解】解:(1)直线AC如图所示;(2)射线CD如图所示;(3)线段BD如图所示;(4)垂线段DF如图所示;(5)垂线段DF的长是点D到直线AB的距离,故答案为:DF.【点睛】本题考查画直线、射线、线段、垂线段、点到直线的距离,熟练掌握基本作图方法,理解点到直线的距离的定义是解答的关键.3、同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行【分析】根据题意读懂推理过程中每一步的推理依据即可完成解答.【详解】,(已知),(垂直的定义),(同位角相等,两直线平行),(两直线平行,同位角相等),(已知),(等量代换),(内错角相等,两直线平行).故答案为:同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质、垂直的定义等知识,关键是读懂推理过程,明确每一步的根据.4、(1)∠BOC=60°(2)见解析【分析】(1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;(2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.【详解】(1)∵∠AOB=∠BOC+∠AOC=180°,又∠BOC:∠AOC=1:2,∴∠AOC=2∠BOC,∴∠BOC+2∠BOC=180°,∴∠BOC=60°;(2)∵OD平分∠BOC,∴∠BOD=∠DOC,∵∠DOC+∠COE=90°,∠AOB是平角,∴∠AOE+∠BOD=90°,∴∠AOE=∠COE即OE平分∠AOC.【点睛】本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.5、61.5°【分析】由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.【详解】解:∵OP平分∠AOC,∠AOC=38°,∴∠AOP=∠COP=∠AOC=×38°=19°,∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,∵ON平分∠POB∴∠PON=∠BOP=×161°=80.5°,∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.【点睛】本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.6、见解析【分析】由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.【详解】证明:∵CE平分∠BCD( 已知 ),∴∠1= ∠4 ( 角平分线定义 ),∵∠1=∠2=70°已知,∴∠1=∠2=∠4=70°(等量代换),∴AD∥BC(内错角相等,两直线平行),∴∠D=180°-∠BCD=180°-∠1-∠4=40°,∵∠3=40°已知,∴ ∠D =∠3,∴AB∥CD(内错角相等,两直线平行).故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.【点睛】本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.7、(1)见解析;(2)34°【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,∴∠ENC+∠FMN=180°,∴FG∥ED,∴∠2=∠D,∵AB∥CD,∴∠3=∠D,∴∠2=∠3;(2)解:∵AB∥CD,∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,∵AB∥CD,∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.8、55°【分析】由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.【详解】解:∵∠AOD=70°,∴∠COB=∠AOD=70°,∵OE平分∠BOC,∴∠EOB=∠EOC=35°,∵∠FOE=90°,∴∠AOF=180°-∠EOB-∠FOE=55°.【点睛】本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.9、3.15【分析】根据跳远的距离应该是起跳板到P点的垂线段的长度进行求解即可【详解】解:由图形可知,小明的跳远成绩应该为PN的长度,即3.15米,故答案为:3.15.【点睛】本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键.10、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析【分析】(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.【详解】解:(1)∵OC⊥CD,∴∠DOF=90°,∴∠AOF+∠AOD=90°,又∵∠BOC=∠AOD,∴∠AOF+∠BOC=90°,∵OC平分∠BOE,∴∠COE=∠BOC,∴∠AOF+∠COE=90°;∴∠AOF的余角是,∠COE,∠BOC,∠AOD;∵∠AOF+∠BOF=180°,∴∠AOF的补角是∠BOF;(2)∵OC平分∠BOE,∠BOE=60°,∴∠BOC=30°,又∵∠AOD=∠BOC,∴∠AOD=30°;(3)∠AOF=∠EOF,理由如下:由(1)可得∠AOD=∠BOC=∠COE,∵OF⊥OC,∴∠DOF=∠COF=90°,∴∠AOD+∠AOF=∠EOF+∠COE=90°,∴∠AOF=∠EOF.【点睛】本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共29页。试卷主要包含了下列说法等内容,欢迎下载使用。
这是一份数学七年级下册第十三章 相交线 平行线综合与测试达标测试,共27页。试卷主要包含了下列说法中正确的是,如图,∠1与∠2是同位角的是,下列说法等内容,欢迎下载使用。
这是一份2020-2021学年第十三章 相交线 平行线综合与测试习题,共33页。试卷主要包含了下列关于画图的语句正确的是.等内容,欢迎下载使用。