


初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题
展开沪教版(上海)七年级数学第二学期第十二章实数章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知2m﹣1和5﹣m是a的平方根,a是( )
A.9 B.81 C.9或81 D.2
2、下列说法中错误的是( )
A.9的算术平方根是3 B.的平方根是
C.27的立方根为 D.平方根等于±1的数是1
3、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )
A.4 B.6 C.12 D.36
4、100的算术平方根是( )
A.10 B. C. D.
5、如果a、b分别是的整数部分和小数部分,那么的值是( )
A.8 B. C.4 D.
6、下列语句正确的是( )
A.8的立方根是2 B.﹣3是27的立方根
C.的立方根是± D.(﹣1)2的立方根是﹣1
7、若,那么( )
A.1 B.-1 C.-3 D.-5
8、下列说法中正确的有( )
①±2都是8的立方根
②=x
③的平方根是3
④﹣=2.
A.1个 B.2个 C.3个 D.4个
9、下列各数中,最小的数是( )
A.0 B. C. D.﹣3
10、在,, 0, , , 0.010010001……, , -0.333…, , 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )
A.2个 B.3个 C.4个 D.5个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、给定二元数对(p,q),其中或1,或1.三种转换器A,B,C对(p,q)的转换规则如下:
(1)在图1所示的“A—B—C”组合转换器中,若输入,则输出结果为________;
(2)在图2所示的“①—C—②”组合转换器中,若当输入和时,输出结果均为0,则该组合转换器为“____—C—____”(写出一种组合即可).
2、若实数a,b互为相反数,c,d互为倒数,e是的整数部分,f是的小数部分,则代数式的值是 ___.
3、若一个正数的平方根是3x+2和5x-10,则这个数是____________.
4、比较大小:﹣|﹣4|______﹣π.(填“>”、“=”或“<”)
5、下列各数中:12,,,,0.1010010001…(每两个1之间的0依次加1),其中,无理数有_____个.
三、解答题(10小题,每小题5分,共计50分)
1、计算:(π-4)0+|-6|-+
2、计算:
(1);
(2).
3、计算:.
4、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为4∶3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.
5、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记.
例如:,∴,则
(1)判断7643和4631是否为“多多数”?请说明理由;
(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”.
6、求下列各式中的x:
(1);
(2).
7、计算:.
8、计算:.
9、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,,…,这样的分式是假分式;像,,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:;.解决下列问题:
(1)写出一个假分式为: ;
(2)将分式化为整式与真分式的和的形式为: ;(直接写出结果即可)
(3)如果分式的值为整数,求x的整数值.
10、已知的立方根是2,算术平方根是4,求的算术平方根.
-参考答案-
一、单选题
1、C
【分析】
分两种情况讨论求解:当2m﹣1与5﹣m是a的两个不同的平方根和当2m﹣1与5﹣m是a的同一个平方根.
【详解】
解:若2m﹣1与5﹣m互为相反数,
则2m﹣1+5﹣m=0,
∴m=﹣4,
∴5﹣m=5﹣(﹣4)=9,
∴a=92=81,
若2m﹣1=5﹣m,
∴m=2,
∴5﹣m=5﹣2=3,
∴a=32=9,
故选C.
【点睛】
本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.
2、C
【分析】
根据平方根,算术平方根,立方根的性质,即可求解.
【详解】
解:A、9的算术平方根是3,故本选项正确,不符合题意;
B、因为 ,4的平方根是 ,故本选项正确,不符合题意;
C、27的立方根为3,故本选项错误,符合题意;
D、平方根等于±1的数是1,故本选项正确,不符合题意;
故选:C
【点睛】
本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.
3、D
【分析】
根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.
【详解】
解:∵一个正数a的两个不同平方根是2x-2和6-3x,
∴2x-2+6-3x=0,
解得:x=4,
∴2x-2=2×4-2=8-2=6,
∴正数a=62=36.
故选择D.
【点睛】
本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.
4、A
【分析】
根据算术平方根的概念:一个正数x的平方等于a,即,那么这个正数x就叫做a的算术平方根,即可解答.
【详解】
解:∵,,(舍去)
∴100的算术平方根是10,
故选A.
【点睛】
本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念.
5、B
【分析】
先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可
【详解】
则
a、b分别是的整数部分和小数部分,则
故选B
【点睛】
本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键.
6、A
【分析】
利用立方根的运算法则,进行判断分析即可.
【详解】
解:A、8的立方根是2,故A正确.
B、3是27的立方根,故B错误.
C、的立方根是,故C错误.
D、(﹣1)2的立方根是1,故D错误.
故选:A.
【点睛】
本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.
7、D
【分析】
由非负数之和为,可得且,解方程求得,,代入问题得解.
【详解】
解: ,
且,
解得,,
,
故选:D
【点睛】
本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.
8、B
【分析】
根据平方根和立方根的定义进行判断即可.
【详解】
解:①2是8的立方根,-2不是8的立方根,原说法错误;
②=x,正确;
③,9的平方根是3,原说法错误;
④﹣=2,正确;
综上,正确的有②④共2个,
故选:B.
【点睛】
本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.
9、C
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:,
所给的各数中,最小的数是.
故选:C.
【点睛】
本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
10、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=1,=2,,3,
∴无理数有,,,2.010101…(相邻两个1之间有1个0)共4个.
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
二、填空题
1、1 A A
【分析】
(1)利用转换器C的规则即可求出答案.
(2)利用转换器A、B、C的规则,写出一组即可.
【详解】
(1)解:利用转换器C的规则可得:输出结果为1.
(2)解:当输入时,若①对应A,此时经过A、C输出结果为(1,0),②对应A,输出结果恰好为0.
当输入时,若①对应A,此时经过A、C输出结果为(0,1),②对应A,输出结果恰好为0.
故答案为:1;A;A.
【点睛】
本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目.
2、4-
【分析】
根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可.
【详解】
解:∵实数a、b互为相反数,
∴a+b=0,
∵c、d互为倒数,
∴cd=1,
∵3<<4,
∴的整数部分为3,e=3,
∵2<<3,
∴的小数部分为-2,即f=-2,
∴=0+1-3+-2=
故答案为:4-.
【点睛】
本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键.
3、25
【分析】
根据正数的平方根有2个,且互为相反数列出方程,求出方程的解得到的值,即可得到这个正数.
【详解】
解:根据题意得:,
解得:,
即,,
则这个数为25,
故答案为:25.
【点睛】
本题考查了平方根,熟练掌握平方根的定义是解本题的关键.
4、
【分析】
先化简绝对值,再根据实数的大小比较法则即可得.
【详解】
解:,
因为,
所以,即,
故答案为:.
【点睛】
本题考查了绝对值、实数的大小比较,熟练掌握实数的大小比较法则是解题关键.
5、2
【分析】
根据无理数的定义(无理数是指无限不循环小数)判断即可.
【详解】
解:无理数有,0.1010010001…(每两个1之间的0依次加1),共有2个,
故答案为:2.
【点睛】
本题考查了无理数,无理数是无限不循环小数,熟练掌握无理数的概念是本题的关键点.
三、解答题
1、9
【分析】
根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.
【详解】
解:原式
【点睛】
本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.
2、(1)1;(2)
【分析】
(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;
(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.
【详解】
解:(1),
=,
=1;
(2),
=,
=,
=,
=.
【点睛】
本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键.
3、1
【分析】
分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.
4、能,桌面长宽分别为28cm和21cm
【分析】
本题可设它的长为4x,则它的宽为3x,根据面积公式列出方程解答即可求出x的值,再代入长宽的表达式,看是否符合条件即可.
【详解】
能做到,理由如下:
设桌面的长和宽分别为4x(cm)和3x(cm),
根据题意得,4x×3x=588.
12x2=588.
(cm)
3x=3×7=21(cm).
∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm,
∴能够裁出一个长方形面积为588cm2并且长宽之比为4∶3的桌面,
答:桌面长宽分别为28cm和21cm.
【点睛】
本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点.
5、
(1)7643是“多多数”, 4631不是“多多数”,
(2)5421或6734
【分析】
(1)根据新定义,即可判断;
(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出A、F(A),根据为一个能被13整除的“多多数”,且,,列出关系式,进而求解.
(1)
在7643中,7-4=3,6-3=3,
∴7643是“多多数”,
在4631中,3-3=1,6-1=5,
∴4631不是“多多数”,
(2)
设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,
∴A表示的数为
∴
∴
∵
∴
∴
∵个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,
∴,解得
∴x、y的范围为,且x、y为整数
∵若为一个能被13整除的“多多数”,
∴
当时,,,
y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是
同理,当时,,,没有符合条件的y;
当时,,,没有符合条件的y;
当时,,,符合条件的;
当时,,,没有符合条件的y;
当时,,,没有符合条件的y;
综上符合条件的是、
当时A为5421,
当时A为6734
综上足条件的“多多数”为5421或6734.
【点睛】
本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.
6、
(1)或
(2)
【分析】
(1)根据平方根定义开方,求出两个方程的解即可;
(2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可.
(1)
开平方得,
∴
解得,或
(2)
移项得,
方程两边同除以8,得,
开立方,得,
【点睛】
本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力.
7、1
【分析】
根据平方根与立方根可直接进行求解.
【详解】
解:原式.
【点睛】
本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.
8、
【分析】
根据求一个数的算术平方根,负整数指数幂,0次幂进行计算即可
【详解】
原式=
=.
【点睛】
本题考查了求一个数的算术平方根,负整数指数幂,0次幂,正确的计算是解题的关键.
9、(1);(2)1+;(3)x=0,1,3,4
【分析】
(1)根据定义即可求出答案.
(2)根据题意给出的变形方法即可求出答案.
(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.
【详解】
解:(1)根据题意,是一个假分式;
故答案为:(答案不唯一).
(2);
故答案为:;
(3)∵,
∴x2=±1或x2=±2,
∴x=0,1,3,4;
【点睛】
本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.
10、
【分析】
根据立方根、算术平方根解决此题.
【详解】
解:由题意得:2a+4=8,3a+b-1=16.
∴a=2,b=11.
∴4a+b=8+11=19.
∴4a+b的算术平方根为.
【点睛】
本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共26页。试卷主要包含了下列运算正确的是,a为有理数,定义运算符号▽,关于的叙述,错误的是,下列等式正确的是,下列判断,若关于x的方程等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共19页。试卷主要包含了下列运算正确的是,下列四个数中,最小的数是,三个实数,2,之间的大小关系,下列说法正确的是,下列说法中正确的有等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题,共19页。试卷主要包含了下列判断中,你认为正确的是,在下列各数,下列等式正确的是.,9的平方根是,10的算术平方根是等内容,欢迎下载使用。