搜索
    上传资料 赚现金
    难点解析沪教版(上海)七年级数学第二学期第十二章实数定向测评练习题(含详解)
    立即下载
    加入资料篮
    难点解析沪教版(上海)七年级数学第二学期第十二章实数定向测评练习题(含详解)01
    难点解析沪教版(上海)七年级数学第二学期第十二章实数定向测评练习题(含详解)02
    难点解析沪教版(上海)七年级数学第二学期第十二章实数定向测评练习题(含详解)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练

    展开
    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共21页。试卷主要包含了关于的叙述,错误的是,下列运算正确的是,下列等式正确的是,的算术平方根是等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数定向测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列说法正确的是(  )

    A.是分数

    B.0.1919919991…(每相邻两个1之间9的个数逐次加1)是有理数

    C.﹣3x2y+4x﹣1是三次三项式,常数项是1

    D.单项式﹣的次数是2,系数为﹣

    2、可以表示(   

    A.0.2的平方根 B.的算术平方根

    C.0.2的负的平方根 D.的立方根

    3、下列说法正确的是(  )

    A.一个数的立方根有两个,它们互为相反数

    B.负数没有立方根

    C.任何数的立方根都只有一个

    D.如果一个数有立方根,那么这个数也一定有平方根

    4、关于的叙述,错误的是(  )

    A.是无理数

    B.面积为8的正方形边长是

    C.的立方根是2

    D.在数轴上可以找到表示的点

    5、在3.14,中,无理数有(     

    A.1个 B.2个 C.3个 D.4个

    6、下列运算正确的是(  )

    A. B. C. D.

    7、下列等式正确的是(   )

    A. B. C. D.

    8、的算术平方根是(   

    A.2 B. C. D.

    9、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是(   

    A.6cm B.12cm C.18cm D.24cm

    10、对于两个有理数,定义一种新的运算:,若,则的值为(  

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如果一个正数x的平方根是2a﹣3和5﹣a,那么x的值是 _____.

    2、的算术平方根是 _____;﹣64的立方根是 _____.

    3、比较大小:﹣|﹣4|______﹣π.(填“>”、“=”或“<”)

    4、已知xy为实数,且,则的值为______.

    5、已知432=1849,442=1936,452=2025,462=2116,若n为整数,且nn+1,则n的值为 _____.

    三、解答题(10小题,每小题5分,共计50分)

    1、计算:

    (1)         

    (2)

    2、已知正数a的两个不同平方根分别是2x﹣2和6﹣3xa﹣4b的算术平方根是4.

    (1)求这个正数a以及b的值;

    (2)求b2+3a﹣8的立方根.

    3、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?

    4、求下列各式中的x

    (1)

    (2)

    5、(1)计算:

    (2)求下列各式中的x

    ②(x+3)3=﹣27.

    6、求下列各式中的x

    (1)

    (2)

    7、计算题:

    (1)

    (2)

    8、(1)计算:

    (2)求式中的x:(x+4)2=81.

    9、如图是一个无理数筛选器的工作流程图.

    (1)当x为16时,y值为______;

    (2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;

    (3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?

    (4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.

    10、解方程:

    (1)x2=81;

    (2)(x﹣1)3=27.

     

    -参考答案-

    一、单选题

    1、D

    【分析】

    根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可.

    【详解】

    解:A、是无限不循环小数,不是分数,故此选项不符合题意;

    B、0.1919919991…(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;

    C、﹣3x2y+4x﹣1是三次三项式,常数项是-1,故此选项不符合题意;

    D、单项式﹣的次数是2,系数为﹣,故此选项符合题意;

    故选D.

    【点睛】

    本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.

    2、C

    【分析】

    根据平方根和算术平方根的定义解答即可.

    【详解】

    解:可以表示0.2的负的平方根,

    故选:C

    【点睛】

    此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.

    3、C

    【分析】

    利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义.

    【详解】

    解:∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,

    ∴A选项说法不正确;

    ∵一个负数有一个负的立方根,

    ∴B选项说法不正确;

    ∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,

    ∴C选项说法正确;

    ∵一个负数有一个负的立方根,但负数没有平方根,

    ∴D选项说法不正确.

    综上,说法正确的是C选项,

    故选:C.

    【点睛】

    本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.

    4、C

    【分析】

    根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.

    【详解】

    解:A是无理数,该说法正确,故本选项不符合题意;

    B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;

    C、8的立方根是2,该说法错误,故本选项符合题意;

    D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;

    故选:C

    【点睛】

    本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.

    5、C

    【分析】

    分别根据无理数、有理数的定义即可判定选择项.

    【详解】

    解:3.14是有理数,是无理数,是无理数,是有理数,是有理数,是无理数,是有理数,是有理数;

    ∴无理数有三个,

    故选C.

    【点睛】

    此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.

    6、B

    【分析】

    依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可.

    【详解】

    A、,故A错误;

    B、,故B正确;

    C.,故C错误;

    D.−|-2|=-2,故D错误.

    故选:B.

    【点睛】

    本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键.

    7、C

    【分析】

    根据算术平方根的定义和性质,立方根的定义逐项分析判断即可

    【详解】

    A. ,故该选项不正确,不符合题意;

    B. 无意义,故该选项不正确,不符合题意;   

    C. ,故该选项正确,符合题意;

    D. ,故该选项不正确,不符合题意;

    故选C

    【点睛】

    本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).

    8、A

    【分析】

    根据算术平方根的定义即可求出结果.

    【详解】

    解:=4,4的算术平方根是2.

    故选:A

    【点睛】

    此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.

    9、D

    【分析】

    由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.

    【详解】

    解:∵每个小立方体的体积为216cm3

    ∴小立方体的棱长

    由三视图可知,最高处有四个小立方体,

    ∴该几何体的最大高度是4×6=24cm,

    故选D.

    【点睛】

    本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.

    10、D

    【分析】

    根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.

    【详解】

    解:

    解得:

    故选D

    【点睛】

    本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.

    二、填空题

    1、49

    【分析】

    一个正数的平方根性质是互为相反数得出2a﹣3+5﹣a=0,解方程求出a =-2,再求平方根,利用平方根求出原数即可

    【详解】

    解:∵一个正数x的平方根是2a﹣3和5﹣a

    ∴2a﹣3+5﹣a=0,

    解得a =-2,

    a =-2时2a﹣3=-2×2-3=-7,

    x=(-7)2=49.

    故答案为:49.

    【点睛】

    本题考查一个正数x的平方根性质,一个正数有两个平方根,它们是互为相反数,0的平方根是0,负数没有平方根,根据平方根性质列方程是解题关键.

    2、    ﹣4   

    【分析】

    根据立方根、算术平方根的概念求解.

    【详解】

    解:=5,5的算术平方根是

    的算术平方根是

    ﹣64的立方根是﹣4.

    故答案为:,﹣4.

    【点睛】

    本题考查了立方根、算术平方根的知识,掌握各知识点的概念是解答本题的关键.

    3、

    【分析】

    先化简绝对值,再根据实数的大小比较法则即可得.

    【详解】

    解:

    因为

    所以,即

    故答案为:

    【点睛】

    本题考查了绝对值、实数的大小比较,熟练掌握实数的大小比较法则是解题关键.

    4、2

    【分析】

    根据偶次幂及算术平方根的非负性可得xy的值,然后问题可求解.

    【详解】

    解:∵

    故答案为2.

    【点睛】

    本题主要考查偶次幂及算术平方根的非负性,熟练掌握偶次幂及算术平方根的非负性是解题的关键.

    5、44

    【分析】

    由已知条件的提示可得,即,从而可得答案.

    【详解】

    解:

    又∵n为整数,

    故答案为:44.

    【点睛】

    本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.

    三、解答题

    1、(1)1;(2)2

    【分析】

    (1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;

    (2)根据同分母分式的加减法法则计算.

    【详解】

    解:(1)原式=1+2-2 

    =1.

    (2)原式=

    =2.

    【点睛】

    此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键..

    2、(1);(2)b2+3a﹣8的立方根是5

    【分析】

    (1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;

    (2)将(1)中所求ab的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.

    【详解】

    解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x

    ∴2x﹣2+6﹣3x=0,

    x=4,

    ∴2x﹣2=6,

    a=36,

    a﹣4b的算术平方根是4,

    a﹣4b=16,

    ∴36-4b=16

    b=5;

    (2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,

    b2+3a﹣8的立方根是5.

    【点睛】

    本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.

    3、这个长方体的长、宽、高分别为

    【分析】

    根据题意设这个长方体的长、宽、高分别为4x、2xx,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可.

    【详解】

    解:设这个长方体的长、宽、高分别为4x、2xx

    根据题意得:4x•2x=24,

    解得:xx=﹣(舍去).

    则4x=4,2x=2

    所以这个长方体的长、宽、高分别为4cm、2cmcm

    【点睛】

    本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.

    4、(1);(2)

    【分析】

    (1)根据等式的性质和平方根的意义进行计算即可;

    (2)根据等式的性质和立方根的意义进行计算即可.

    【详解】

    解:(1)

    两边都除以4得,

    所以,

    (2)

    两边都减1得,

    所以,

    解得,

    【点睛】

    本题考查等式的性质、立方根、平方根的意义,解题的关键是掌握等式的性质、平方根、立方根的意义是正确解答的关键.

    5、(1);(2)①;②

    【分析】

    (1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;

    (2)①对等式进行开平方运算,再把x的系数转化为1即可;

    ②对等式进行开立方运算,再移项即可.

    【详解】

    解:(1)

    =2(﹣2)﹣3

    =﹣3

    (2)①

    ±3

    x=±6;

    ②(x+3)3=﹣27

    x+3=﹣3

    x=﹣6.

    【点睛】

    本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用.

    6、(1);(2)

    【分析】

    (1)方程整理后,开方即可求出x的值;

    (2)方程开立方即可求出x的值.

    【详解】

    (1)等式两边同时除以2得:

    两边开平方得:

    (2)两边开立方得:

    等式两边同时减去1得:

    【点睛】

    本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键.

    7、

    (1)

    (2)

    【分析】

    (1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;

    (2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.

    (1)

    解:原式=

    (2)

    解:原式=

    【点睛】

    本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.

    8、(1);(2)

    【分析】

    (1)分别计算算术平方根、立方根、绝对值,再进行加减即可;

    (2)根据平方根的意义,计算出x的值.

    【详解】

    解:(1)原式

    (2)由平方根的意义得:

    【点睛】

    本题考查了平方根意义和实数的运算.题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键.

    9、

    (1)

    (2)0,1

    (3)x<0

    (4)x=3或x=9或x=81.

    【分析】

    (1)根据运算规则即可求解;

    (2)根据0的算术平方根是0,即可判断;

    (3)根据二次根式有意义的条件,被开方数是非负数即可求解;

    (4)根据运算法则,进行逆运算即可求得无数个满足条件的数.

    (1)

    解:当x=16时,,则y=

    故答案是:

    (2)

    解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;

    (3)

    解:当x<0时,导致开平方运算无法进行;

    (4)

    解: x的值不唯一.x=3或x=9或x=81.

    【点睛】

    本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.

    10、(1)x=±9;(2)x=4

    【分析】

    (1)方程利用平方根定义开方即可求出解;

    (2)方程利用立方根定义开立方即可求出解.

    【详解】

    解:(1)开方得:x=±9;

    (2)开立方得:x﹣1=3,

    解得:x=4.

    【点睛】

    本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共26页。试卷主要包含了下列运算正确的是,a为有理数,定义运算符号▽,关于的叙述,错误的是,下列等式正确的是,下列判断,若关于x的方程等内容,欢迎下载使用。

    初中数学第十二章 实数综合与测试练习题: 这是一份初中数学第十二章 实数综合与测试练习题,共18页。试卷主要包含了在下列各数,下列各组数中相等的是,下列各数中,比小的数是,下列各数中,最小的数是,在以下实数等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共19页。试卷主要包含了观察下列算式,估计的值在,以下正方形的边长是无理数的是,4的平方根是,下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map