终身会员
搜索
    上传资料 赚现金

    2022年最新精品解析沪教版(上海)七年级数学第二学期第十二章实数月考试题(含解析)

    立即下载
    加入资料篮
    2022年最新精品解析沪教版(上海)七年级数学第二学期第十二章实数月考试题(含解析)第1页
    2022年最新精品解析沪教版(上海)七年级数学第二学期第十二章实数月考试题(含解析)第2页
    2022年最新精品解析沪教版(上海)七年级数学第二学期第十二章实数月考试题(含解析)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十二章 实数综合与测试课时练习

    展开

    这是一份2021学年第十二章 实数综合与测试课时练习,共23页。试卷主要包含了计算2﹣1+30=,下列说法中,正确的是,若,则的值为,在0.1010010001…,估算的值是在之间等内容,欢迎下载使用。


    沪教版(上海)七年级数学第二学期第十二章实数月考

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、在实数中,无理数的个数是(  

    A.1 B.2 C.3 D.4

    2、若,则的值为(   

    A. B. C. D.

    3、下列各数是无理数的是(   

    A.-3 B. C.2.121121112 D.

    4、计算2﹣1+30=(   

    A. B.﹣1 C.1 D.

    5、下列说法中,正确的是(   

    A.无限小数都是无理数

    B.数轴上的点表示的数都是有理数

    C.任何数的绝对值都是正数

    D.和为0的两个数互为相反数

    6、若,则的值为(  

    A. B. C. D.

    7、在0.1010010001…(相邻两个1之间依次多一个0),中,无理数有(   

    A.1个 B.2个 C.3个 D.4个

    8、估算的值是在(    )之间

    A.5和6 B.6和7 C.7和8 D.8和9

    9、点A在数轴上的位置如图所示,则点A表示的数可能是(   

    A. B. C. D.

    10、下列说法正确的是(   

    A.是最小的正无理数 B.绝对值最小的实数不存在

    C.两个无理数的和不一定是无理数 D.有理数与数轴上的点一一对应

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、已知x2=36,那么x=___________;如果(-a)2=(7)2,那么a=_____________

    2、给定二元数对(pq),其中或1,或1.三种转换器ABC对(pq)的转换规则如下:

    (1)在图1所示的“ABC”组合转换器中,若输入,则输出结果为________;

    (2)在图2所示的“①—C—②”组合转换器中,若当输入时,输出结果均为0,则该组合转换器为“____—C—____”(写出一种组合即可).

    3、计算:__________.

    4、已知432=1849,442=1936,452=2025,462=2116,若n为整数,且nn+1,则n的值为 _____.

    5、比较大小:_________

    三、解答题(10小题,每小题5分,共计50分)

    1、观察下列等式:

    第1个等式:12=13

    第2个等式:(1+2)2=13+23

    第3个等式:(1+2+3)2=13+23+33

    第4个等式:(1+2+3+4)2=13+23+33+43

    ……

    按照以上规律,解决下列问题:

    (1)写出第5个等式:__________________;

    (2)写出第nn为正整数)个等式:__________________(用含n的等式表示);

    (3)利用上述规律求值:

    2、求下列各数的立方根:

    (1)729

    (2)

    (3)

    (4)

    3、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为abab).定义:若数mb3a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3a3=(ba)(b2+ab+a2).)

    (1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;

    (2)已知两个“复合数”的差是42,求这两个“复合数”.

    4、求下列各数的算术平方根:

    (1)0.64            (2)

    5、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,…,这样的分式是假分式;像,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:.解决下列问题:

    (1)写出一个假分式为:   

    (2)将分式化为整式与真分式的和的形式为:    ;(直接写出结果即可)

    (3)如果分式的值为整数,求x的整数值.

    6、求下列各式的值:

    (1)

    (2)

    (3)

    7、如图,数轴的原点为O,点ABC是数轴上的三点,点B对应的数是1,AB=6,BC=2,动点PQ同时分别从AC出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).

    (1)点A表示的数为      ,点C表示的数为      

    (2)求t为何值时,点P与点Q能够重合?

    (3)是否存在某一时刻t,使点O平分线段PQ且点P与点Q在原点的异侧?若存在,请求出满足条件的t值.若不存在,请说明理由.

    8、有理数ab如果满足,那么我们定义ab为一组团结数对,记为<ab>.例如:,因为,所以,则称为一组团结数对,记为<>.

    根据以上定义完成下列各题:

    (1)找出2和2,1和3,-2和这三组数中的团结数对,记为       

    (2)若<5,x>成立,则x的值为       

    (3)若<ab>成立,b为按一定规律排列成1,-3,9,-27,81,-243,……这列数中的一个,且bb左右两个相邻数的和是567,求a的值.

    9、计算:.

    10、已知正数a的两个不同平方根分别是2x﹣2和6﹣3xa﹣4b的算术平方根是4.

    (1)求这个正数a以及b的值;

    (2)求b2+3a﹣8的立方根.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

    【详解】

    解:=2,=2,,

    ∴无理数只有共2个.

    故选:B.

    【点睛】

    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

    2、B

    【分析】

    根据算术平方根、偶次方的非负性确定ab的值,然后代入计算.

    【详解】

    解:

    解得

    所以

    故选:B

    【点睛】

    本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.

    3、D

    【分析】

    根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.

    【详解】

    A、-3是整数,属于有理数.

    B、是分数,属于有理数.

    C、2.121121112是有限小数,属于有理数.

    D、是无限不循环小数,属于无理数.

    故选:D.

    【点睛】

    本题主要是考察无理数的概念,初中数学中常见的无理数主要是:等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.

    4、D

    【分析】

    利用负整数指数幂和零指数幂的意义进行化简计算即可.

    【详解】

    解:原式=+1=

    故选:D.

    【点睛】

    本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.

    5、D

    【分析】

    根据实数的性质依次判断即可.

    【详解】

    解:A.∵无限不循环小数才是无理数.∴A错误.

    B.∵数轴上的点也可以表示无理数.∴B错误.

    C.∵0的绝对值是0,既不是正数也不是负数.∴C错误.

    D.∵和为0的两个数互为相反数.∴D正确.

    故选:D.

    【点睛】

    本题考查了无理数的定义,实数与数轴的关系,绝对值的性质,以及相反数的定义,熟练掌握各知识点是解答本题的关键.

    6、C

    【分析】

    化简后利用平方根的定义求解即可.

    【详解】

    解:∵

    x2-9=55,

    x2=64,

    x=±8,

    故选C.

    【点睛】

    本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.

    7、B

    【分析】

    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

    【详解】

    解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;

    是有理数;

    是有理数;

    是无理数;

    ∴无理数有2个,

    故选B.

    【点睛】

    本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.

    8、C

    【分析】

    根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故

    【详解】

    故选:C.

    【点睛】

    本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.

    9、A

    【分析】

    根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.

    【详解】

    解:观察得到点A表示的数在4至4.5之间,

    A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;

    B、∵9<10<16,∴3<<4,故该选项不符合题意;

    C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;

    D、∵25<30<36,∴5<<6,故该选项不符合题意;

    故选:A.

    【点睛】

    本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.

    10、C

    【分析】

    利用正无理数,绝对值,以及数轴的性质判断即可.

    【详解】

    解:、不存在最小的正无理数,不符合题意;

    、绝对值最小的实数是0,不符合题意;

    、两个无理数的和不一定是无理数,例如:,符合题意;

    、实数与数轴上的点一一对应,不符合题意.

    故选:C.

    【点睛】

    本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.

    二、填空题

    1、±6##6或-6    ±7   

    【分析】

    根据平方根的定义求解即可.

    【详解】

    解:∵(±6)2=36,

    ∴当x2=36时,则x=±6;

    ∵(-a)2=(7)2

    a2=49,

    ∵(±7)2=49,

    a=±7;

    故答案为:±6;±7.

    【点睛】

    本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根.0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.

    2、1    A    A   

    【分析】

    (1)利用转换器C的规则即可求出答案.

    (2)利用转换器ABC的规则,写出一组即可.

    【详解】

    (1)解:利用转换器C的规则可得:输出结果为1.

    (2)解:当输入时,若①对应A,此时经过AC输出结果为(1,0),②对应A,输出结果恰好为0.

    当输入时,若①对应A,此时经过AC输出结果为(0,1),②对应A,输出结果恰好为0.

    故答案为:1;AA

    【点睛】

    本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目.

    3、3

    【分析】

    根据实数的运算法则即可求出答案.

    【详解】

    解:原式

    【点睛】

    本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.

    4、44

    【分析】

    由已知条件的提示可得,即,从而可得答案.

    【详解】

    解:

    又∵n为整数,

    故答案为:44.

    【点睛】

    本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.

    5、<

    【分析】

    先把两个数同时平方后比较大小,因为都是正数,即平方后的数越大,其这个数越大,由此求解即可.

    【详解】

    解:∵

    故答案为:<.

    【点睛】

    本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法.

    三、解答题

    1、

    (1)(1+2+3+4+5)2=13+23+33+43+53

    (2)(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3

    (3)265

    【分析】

    (1)根据前几个等式的变化规律解答即可;

    (2)根据前几个等式的变化规律写出第n个等式即可;

    (3)根据变化规律和平方差公式进行计算即可.

    (1)

    解:根据题意,第5个等式为(1+2+3+4+5)2=13+23+33+43+53

    故答案为:(1+2+3+4+5)2=13+23+33+43+53

    (2)

    解:根据题意,第n个等式为(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3

    故答案为:(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3

    (3)

    解:由(2)中(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3知,

    (1+2+3+4+5+…+20)2=13+23+33+43+53+…+203①,

    (1+2+3+4+5+…+10)2=13+23+33+43+53+…+103②,

    ①-②得:

    (1+2+3+4+5+…+20+1+2+3+4+5+…+10)×(11+12+13+…+20)=113+123+133+…+203

    =(1+2+3+4+5+…+20+1+2+3+4+5+…+10)

    =265.

    【点睛】

    本题考查数字类规律探究、平方差公式、与实数运算相关的规律题,理解题意,正确得出等式的变化规律并能灵活运用是解答的关键.

    2、(1)9;(2);(3);(4)-5

    【分析】

    根据立方根的定义,找到一个数,使其立方等于已知的数,从而可得答案.

    【详解】

    解:(1)因为93=729,

    所以729的立方根是9,即

    (2),因为

    所以的立方根是,即

    (3)因为

    所以的立方根是,即

    (4).

    【点睛】

    本题考查的是求解一个数的立方根,掌握“利用立方根的含义求解一个数的立方根”是解本题的关键.

    3、(1)12不是复合数;证明见解析;(2)98和56.

    【分析】

    (1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;

    (2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.

    【详解】

    (1)12不是复合数,

    ∵找不到两个整数ab,使a3b3=12,

    故12不是复合数,

    设“正点”P所表示的数为xx为正整数),

    ax﹣1,bx+1,

    ∴(x+1)3﹣(x﹣1)3

    =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)

    =2(3x2+1)

    =6x2+2,

    ∴6x2+2﹣2=6x2一定能被6整除;

    (2)设两个复合数为6m2+2和6n2+2(mn都是正整数),

    ∵两个“复合数”的差是42,

    ∴(6m2+2)﹣(6n2+2)=42,

    m2n2=7,

    mn都是正整数,

    ∴6m2+2=98,6n2+2=56,

    这两个“复合数”为98和56.

    【点睛】

    本题考查关于实数的新定义题型,理解新定义是解题的关键.

    4、 (1) 0.8; (2)

    【分析】

    根据算术平方根的定义求解即可.

    【详解】

    解:(1)因为0.82=0.64,

    所以0.64的算术平方根是0.8,即=0.8.

    (2)因为

    所以的算术平方根是,即

    【点睛】

    本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.

    5、(1);(2)1+;(3)x=0,1,3,4

    【分析】

    (1)根据定义即可求出答案.

    (2)根据题意给出的变形方法即可求出答案.

    (3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.

    【详解】

    解:(1)根据题意,是一个假分式;

    故答案为:(答案不唯一).

    (2)

    故答案为:

    (3)∵

    x2=±1或x2=±2,

    x=0,1,3,4;

    【点睛】

    本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.

    6、(1)6;(2);(3)

    【分析】

    利用立方与开立方互为逆运算进行化简求值.

    【详解】

    解:(1)

    (2)

    (3)

    【点睛】

    本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.

    7、(1)-5,3;(2)t=4;(3)存在,t=,理由见解析.

    【分析】

    (1)由点B对应的数及线段ABBC的长,可找出点AC对应的数;

    (2)根据点PQ的出发点、速度及方向,由追击的等量关系列出含t的方程,解方程即可;

    (3)由题意得OP=OQ,据此列一元一次方程,解此方程即可.

    【详解】

    解:(1)1-6=-5,1+2=3

    即点A表示的数为 -5,点C表示的数为3,

    故答案为:-5,3;

    (2)若点P与点Q能够重合,则AP-CQ=AC

    即3t-t=8

    2t=8

    t=4

    答:当t=4时,点P与点Q能够重合.

    (3)存在,理由如下:

    若点OPQ中点,且点P与点Q在原点的异侧,即OP=OQ

    5-3t=3+t

    4t=2

    t=

    答:当t=时,点O平分线段PQ且点P与点Q在原点的异侧.

    【点睛】

    本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键.

    8、

    (1)<2,2>,<-2,

    (2)

    (3)

    【解析】

    (1)

    和2是一组团结数,即为<>,

    和3不是一组团结数,

    是一组团结数,即为<>,

    故答案为:<>,<>;

    (2)

    若<5,x>成立,则

    故答案为:

    (3)

    b左面相邻的数为xb为-3xb右面相邻的数为9x

    由题意可得

    解得 x=81

    所以 b=-243

    由于<ab>成立,则a-243=-243a,解得

    【点睛】

    本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键.

    9、

    【分析】

    先计算算术平方根、立方根、乘方、化简绝对值,再计算实数的加减法即可得.

    【详解】

    解:原式

    【点睛】

    本题考查了算术平方根、立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.

    10、(1);(2)b2+3a﹣8的立方根是5

    【分析】

    (1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;

    (2)将(1)中所求ab的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.

    【详解】

    解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x

    ∴2x﹣2+6﹣3x=0,

    x=4,

    ∴2x﹣2=6,

    a=36,

    a﹣4b的算术平方根是4,

    a﹣4b=16,

    ∴36-4b=16

    b=5;

    (2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,

    b2+3a﹣8的立方根是5.

    【点睛】

    本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.

     

    相关试卷

    沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业:

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业,共20页。试卷主要包含了下列说法中正确的有,的相反数是,若,则的值为,以下正方形的边长是无理数的是,下列等式正确的是,的值等于等内容,欢迎下载使用。

    初中数学第十二章 实数综合与测试当堂达标检测题:

    这是一份初中数学第十二章 实数综合与测试当堂达标检测题,共22页。试卷主要包含了估计的值在,计算2﹣1+30=,﹣π,﹣3,,的大小顺序是,在以下实数,对于两个有理数,下列运算正确的是等内容,欢迎下载使用。

    数学七年级下册第十二章 实数综合与测试综合训练题:

    这是一份数学七年级下册第十二章 实数综合与测试综合训练题,共20页。试卷主要包含了100的算术平方根是,下列各数中,最小的数是,的算术平方根是,下列整数中,与-1最接近的是,观察下列算式等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map