初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业
展开沪教版(上海)七年级数学第二学期第十二章实数章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、计算2﹣1+30=( )
A. B.﹣1 C.1 D.
2、在下列各数:、0.2、﹣π、、、0.101001中有理数的个数是( )
A.1 B.2 C.3 D.4
3、64的立方根为( ).
A.2 B.4 C.8 D.-2
4、下列说法正确的是( )
A.的相反数是 B.2是4的平方根
C.是无理数 D.
5、的相反数是( )
A. B. C. D.
6、一个正数的两个平方根分别是2a与,则a的值为( )
A.1 B.﹣1 C.2 D.﹣2
7、实数在哪两个连续整数之间( )
A.3与4 B.4与5 C.5与6 D.12与13
8、在下列四个实数中,最大的数是( )
A.0 B.﹣2 C.2 D.
9、的算术平方根是( )
A. B. C. D.
10、100的算术平方根是( )
A.10 B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知432=1849,442=1936,452=2025,462=2116,若n为整数且n<<n+1,则n的值是________.
2、设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,
(1)[﹣3.9)=______.
(2)下列结论中正确的是______(填写所有正确结论的序号)
①[0)=0;
②[x)﹣x的最小值是0;
③[x)﹣x的最大值是1;
④存在实数x,使[x)﹣x=0.5成立.
3、若定义新的运算符号“*”为a*b=,则(*)*2=________.
4、若实数满足,则=_____________.
5、的整数部分是_____________.
三、解答题(10小题,每小题5分,共计50分)
1、如果一个自然数的个位数字不为,且能分解成,其中与都是两位数,与的十位数字相同,个位数字之和为,则称数为“风雨数”,并把数分解成的过程,称为“同行分解”.
例如:,和的十位数字相同,个位数字之和为,是“风雨数”.
又如:,和的十位数字相同,但个位数字之和不等于,不是“风雨数”.
(1)判断,是否是“风雨数”?并说明理由;
(2)把一个“风雨数”进行“同行分解”,即,与之和记为,与差的绝对值记为,令,当能被整除时,求出所有满足条件的.
2、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)
3、计算:
(1)
(2)
4、计算:+++.
5、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?
6、求方程中x 的值(x﹣1)2 ﹣16 = 0
7、计算:
(1).
(2)+()2﹣
8、解方程,求x的值.
(1)
(2)
9、计算:.
10、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为.
参考小燕同学的做法,解答下列问题:
(1)写出的小数部分为________;
(2)已知与的小数部分分别为a和b,求a2+2ab+b2的值;
(3)如果,其中x是整数,0<y<1,那么=________
(4)设无理数(m为正整数)的整数部分为n,那么的小数部分为________(用含m,n的式子表示).
-参考答案-
一、单选题
1、D
【分析】
利用负整数指数幂和零指数幂的意义进行化简计算即可.
【详解】
解:原式=+1=.
故选:D.
【点睛】
本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.
2、D
【分析】
有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解.
【详解】
解:,,
∴在、0.2、-π、、、0.101001中,有理数有0.2、、、0.101001,共有4个.
故选:D.
【点睛】
本题考查有理数的意义,掌握有理数的意义是正确判断的前提.
3、B
【分析】
根据立方根的定义进行计算即可.
【详解】
解:∵43=64,
∴实数64的立方根是,
故选:B.
【点睛】
本题考查立方根,理解立方根的定义是正确解答的关键.
4、B
【分析】
根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.
【详解】
解:A. 负数没有平方根,故无意义,A错误;
B.,故2是4的平方根,B正确;
C.是有理数,故C错误;
D. ,故D错误;
故选B.
【点睛】
本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.
5、B
【分析】
直接根据相反数的定义(只有符号不同的两个数互为相反数)进行求解即可.
【详解】
解:的相反数是;
故选:B.
【点睛】
本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.
6、D
【分析】
根据正数有两个平方根,且互为相反数,即可求解.
【详解】
解:根据题意得: ,
解得: .
故选:D
【点睛】
本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.
7、B
【分析】
估算即可得到结果.
【详解】
解:,
,
故选:B.
【点睛】
本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.
8、C
【分析】
先根据正数大于0,0大于负数,排除,,然后再用平方法比较2与即可.
【详解】
解:正数,负数,
排除,,
,,
,
,
最大的数是2,
故选:.
【点睛】
本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.
9、A
【分析】
根据算术平方根的定义即可完成.
【详解】
∵
∴的算术平方根是
即
故选:A
【点睛】
本题考查了算术平方根的计算,掌握算术平方根的定义是关键.
10、A
【分析】
根据算术平方根的概念:一个正数x的平方等于a,即,那么这个正数x就叫做a的算术平方根,即可解答.
【详解】
解:∵,,(舍去)
∴100的算术平方根是10,
故选A.
【点睛】
本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念.
二、填空题
1、44
【分析】
由题意可直接进行求解.
【详解】
解:∵442=1936,452=2025,
∴,
∴,
∴;
故答案为44.
【点睛】
本题主要考查无理数的估算,熟练掌握无理数的估算是解题的关键.
2、-3; ③④
【分析】
(1)利用题中的新定义判断即可.
(2)根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.
【详解】
(1)表示大于-3.9的最小整数为-3,所以[﹣3.9)=-3
(2)解: ①[0)=1,故本项错误;
②[x)−x>0,但是取不到0,故本项错误;
③[x)−x⩽1,即最大值为1,故本项正确;
④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.
∴正确的选项是:③④;
故答案为:③④.
【点睛】
此题考查了实数的运算,理解新定义实数的运算法则是解本题的关键.
3、##
【分析】
根据新定义的运算,先算括号、再算括号外即可.
【详解】
解:(*)*2= .
故答案是.
【点睛】
本题考查了有理数的四则混合运算、新定义运算等知识点,理解新定义运算的运算法则是解答本题的关键.
4、1
【分析】
根据绝对值与二次根式的非负性求出a,b的值,故可求解.
【详解】
解:∵
∴a-2=0,b-4=0
∴a=2,b=4
∴=
故答案为:1.
【点睛】
此题主要考查代数式求值,解题的关键是熟知非负性的运用.
5、3
【分析】
先估算的近似值,然后进行计算即可.
【详解】
解:,
的整数部分是3,
故答案为3.
【点睛】
本题考查了估算无理数的大小,解题的关键是熟练掌握求一个数的平方.
三、解答题
1、(1)195是“风雨数”,621不是“风雨数”,理由见解析;;(2)或或或
【分析】
根据新定义的“风雨数”即可得出答案;
设的十位数为,个位数为,则为,根据能被整除求出的可能的值,再由的值求出的值即可得出答案.
【详解】
解:,且,
是“风雨数”,
,,
不是“风雨数”;
设,则,
,,
能被整除,
,为整数,
,
是的倍数,
满足条件的有,,
若,则,为整数,
,
是的因数,
,,,,
满足条件的有,,,,
,或,或,或,,
或,
若,则,为整数,
,
是的因数,
,,,,,,,,
满足条件的有,,,,
,或,或,或,,
或,
综上,的值为或或或.
【点睛】
本题是新定义题,主要考查了列代数式,一元一次方程的应用,关键是准确理解“风雨数”含义,能把和用含和的式子表示出来.
2、第二种,理由见解析
【分析】
根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.
【详解】
解:第一种方法:1×10×365=3650元
第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元
∵10485.75>3650
∴第二种方法得到的钱多.
【点睛】
本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.
3、(1)5;(2)
【分析】
(1)分别求解算术平方根与立方根,再进行加减运算即可;
(2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.
4、.
【分析】
先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.
【详解】
解:原式
.
【点睛】
本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.
5、这个长方体的长、宽、高分别为、、
【分析】
根据题意设这个长方体的长、宽、高分别为4x、2x、x,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可.
【详解】
解:设这个长方体的长、宽、高分别为4x、2x、x.
根据题意得:4x•2x=24,
解得:x=或x=﹣(舍去).
则4x=4,2x=2.
所以这个长方体的长、宽、高分别为4cm、2cm、cm.
【点睛】
本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.
6、或
【分析】
根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)
【详解】
解:(x﹣1)2 ﹣16 = 0
或
解得或
【点睛】
本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键.
7、(1);(2)
【分析】
(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;
(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.
【详解】
(1)原式,
;
(2)原式,
.
【点睛】
此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.
8、(1)或 ;(2)x=−
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)把x−1可做一个整体求出其立方根,进而求出x的值.
【详解】
解:(1),
,
或 ;
(2)8(x−1)3=−27,
(x−1)3=−,
x−1=−,
x=−.
【点睛】
本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.
9、1
【分析】
分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.
10、(1);(2)1;(3);(4)
【分析】
(1)由题意易得,则有的整数部分为3,然后问题可求解;
(2)由题意易得,则有,,然后可得,然后根据完全平方公式可进行求解;
(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;
(4)根据题意可直接进行求解.
【详解】
解:(1)∵,
∴的整数部分为3,
∴的小数部分为;
故答案为;
(2)∵,
∴,,
∵与的小数部分分别为a和b,
∴,
∴;
(3)由可知,
∵,
∴的小数部分为,
∵x是整数,0<y<1,
∴,
∴;
故答案为;
(4)∵无理数(m为正整数)的整数部分为n,
∴的小数部分为,
∴的小数部分即为的小数部分加1,为;
故答案为.
【点睛】
本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.
初中数学第十二章 实数综合与测试精练: 这是一份初中数学第十二章 实数综合与测试精练,共21页。试卷主要包含了下列各数中,最小的数是,下列说法中,正确的是,观察下列算式,下列说法正确的是,4的平方根是,对于两个有理数等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题,共17页。试卷主要包含了下列运算正确的是,如果a,的相反数是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共21页。试卷主要包含了观察下列算式,下列各数中,比小的数是,下列整数中,与-1最接近的是,已知a=,b=-|-|,c=,若与互为相反数,则a等内容,欢迎下载使用。