搜索
    上传资料 赚现金
    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数综合测试试题(含详细解析)
    立即下载
    加入资料篮
    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数综合测试试题(含详细解析)01
    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数综合测试试题(含详细解析)02
    2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数综合测试试题(含详细解析)03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题

    展开
    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题,共20页。试卷主要包含了的算术平方根是,下列说法正确的是,下列等式正确的是.,下列说法中,正确的是,关于的叙述,错误的是,下列说法等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数综合测试

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、若,那么   

    A.1 B.-1 C.-3 D.-5

    2、下列各数是无理数的是(   

    A. B.3.33 C. D.

    3、下列判断:①10的平方根是±;②互为相反数;③0.1的算术平方根是0.01;④(3a;⑤=±a2.其中正确的有(  )

    A.1个 B.2个 C.3个 D.4个

    4、的算术平方根是(   

    A. B. C. D.

    5、下列说法正确的是(   

    A.是最小的正无理数 B.绝对值最小的实数不存在

    C.两个无理数的和不一定是无理数 D.有理数与数轴上的点一一对应

    6、下列等式正确的是(    ).

    A. B. C. D.

    7、下列说法中,正确的是(   

    A.无限小数都是无理数

    B.数轴上的点表示的数都是有理数

    C.任何数的绝对值都是正数

    D.和为0的两个数互为相反数

    8、关于的叙述,错误的是(  )

    A.是无理数

    B.面积为8的正方形边长是

    C.的立方根是2

    D.在数轴上可以找到表示的点

    9、下列说法:①-27的立方根是3;②36的算数平方根是;③的立方根是;④的平方根是.其中正确说法的个数是(   

    A.1 B.2 C.3 D.4

    10、实数﹣2的倒数是(  )

    A.2 B.﹣2 C. D.﹣

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、用“*”定义一种新运算:对于任意有理数ab,规定a*bab2+2a,则3*(-2)=_____________.

    2、已知x2=36,那么x=___________;如果(-a)2=(7)2,那么a=_____________

    3、若一个正数的平方根是3x+2和5x-10,则这个数是____________.

    4、设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,

    (1)[﹣3.9)=______.

    (2)下列结论中正确的是______(填写所有正确结论的序号)

    ①[0)=0;

    ②[x)﹣x的最小值是0;

    ③[x)﹣x的最大值是1;

    ④存在实数x,使[x)﹣x=0.5成立.

    5、比较大小:_____2(填“>”或“<”或“=”)

    三、解答题(10小题,每小题5分,共计50分)

    1、如图:在数轴上A点表示数aB点表示数bC点表示数c,且ab满足|a+3|+(b﹣9)2=0,c=1.

    (1)a     b     

    (2)点P为数轴上一动点,其对应的数为x,则当x     时,代数式|xa|﹣|xb|取得最大值,最大值为      

    (3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为tt≤8)秒,求第几秒时,点PQ之间的距离是点BQ之问距离的2倍?

    2、已知ab互为相反数,cd互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.

    3、计算题:

    (1)

    (2)

    4、已知a2=16,b3=27,求ab的值.

    5、计算

    6、计算:

    (1)

    (2)+(2

    7、计算:

    8、已知xy满足,求xy的值.

    9、计算

    (1)

    (2)

    10、计算:

    (1)         

    (2)

     

    -参考答案-

    一、单选题

    1、D

    【分析】

    由非负数之和为,可得,解方程求得,代入问题得解.

    【详解】

    解:

    解得,

    故选:D

    【点睛】

    本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.

    2、C

    【分析】

    无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.

    【详解】

    解:,是有理数,3.33和是有理数,是无理数,

    故选:C.

    【点睛】

    本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.

    3、C

    【分析】

    根据平方根和算术平方根的概念,对每一个答案一一判断对错.

    【详解】

    解:①10的平方根是±,正确;

    是相反数,正确;

    ③0.1的算术平方根是,故错误;

    ④(3a,正确;

    a2,故错误;

    正确的是①②④,有3个.

    故选:C.

    【点睛】

    本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.

    4、A

    【分析】

    根据算术平方根的定义即可完成.

    【详解】

    的算术平方根是

    故选:A

    【点睛】

    本题考查了算术平方根的计算,掌握算术平方根的定义是关键.

    5、C

    【分析】

    利用正无理数,绝对值,以及数轴的性质判断即可.

    【详解】

    解:、不存在最小的正无理数,不符合题意;

    、绝对值最小的实数是0,不符合题意;

    、两个无理数的和不一定是无理数,例如:,符合题意;

    、实数与数轴上的点一一对应,不符合题意.

    故选:C.

    【点睛】

    本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.

    6、由不等式的性质可知:5-2<−2<6-2,即3<−2<

    故选:C.

    【点睛】

    本题主要考查的是估算无理数的大小,明确被开方数越大对应的算术平方根也越大是解题的关键.

    4.C

    【分析】

    分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.

    【详解】

    解:A,故此选项错误;

    B,故此选项错误;

    C、由B得此选项正确;

    D,故此选项错误.

    故选:C

    【点睛】

    此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.

    7、D

    【分析】

    根据实数的性质依次判断即可.

    【详解】

    解:A.∵无限不循环小数才是无理数.∴A错误.

    B.∵数轴上的点也可以表示无理数.∴B错误.

    C.∵0的绝对值是0,既不是正数也不是负数.∴C错误.

    D.∵和为0的两个数互为相反数.∴D正确.

    故选:D.

    【点睛】

    本题考查了无理数的定义,实数与数轴的关系,绝对值的性质,以及相反数的定义,熟练掌握各知识点是解答本题的关键.

    8、C

    【分析】

    根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.

    【详解】

    解:A是无理数,该说法正确,故本选项不符合题意;

    B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;

    C、8的立方根是2,该说法错误,故本选项符合题意;

    D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;

    故选:C

    【点睛】

    本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.

    9、A

    【分析】

    分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.

    【详解】

    解:①-27的立方根是-3,错误;

    ②36的算数平方根是6,错误;

    的立方根是,正确;

    的平方根是,错误,

    ∴正确的说法有1个,

    故选:A.

    【点睛】

    本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.

    10、D

    【分析】

    根据倒数的定义即可求解.

    【详解】

    解:-2的倒数是﹣

    故选:D

    【点睛】

    本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.

    二、填空题

    1、18

    【分析】

    根据a*bab2+2a,可得:3*(−2)=3×(−2)2+2×3,据此求出算式的值是多少即可.

    【详解】

    解:∵a*bab2+2a

    ∴3*(−2),

    =3×(−2)2+2×3,

    =3×4+6,

    =12+6,

    =18.

    故答案为:18.

    【点睛】

    此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.

    2、±6##6或-6    ±7   

    【分析】

    根据平方根的定义求解即可.

    【详解】

    解:∵(±6)2=36,

    ∴当x2=36时,则x=±6;

    ∵(-a)2=(7)2

    a2=49,

    ∵(±7)2=49,

    a=±7;

    故答案为:±6;±7.

    【点睛】

    本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根.0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.

    3、25

    【分析】

    根据正数的平方根有2个,且互为相反数列出方程,求出方程的解得到的值,即可得到这个正数.

    【详解】

    解:根据题意得:

    解得:

    则这个数为25,

    故答案为:25.

    【点睛】

    本题考查了平方根,熟练掌握平方根的定义是解本题的关键.

    4、-3;    ③④   

    【分析】

    (1)利用题中的新定义判断即可.

    (2)根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.

    【详解】

    (1)表示大于-3.9的最小整数为-3,所以[﹣3.9)=-3

    (2)解: ①[0)=1,故本项错误;

    ②[x)−x>0,但是取不到0,故本项错误;

    ③[x)−x⩽1,即最大值为1,故本项正确;

    ④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.

    ∴正确的选项是:③④;

    故答案为:③④.

    【点睛】

    此题考查了实数的运算,理解新定义实数的运算法则是解本题的关键.

    5、>

    【分析】

    根据即可得出答案.

    【详解】

    故答案为:>.

    【点睛】

    本题主要考查的是比较实数的大小,熟练掌握相关知识是解题的关键.

    三、解答题

    1、(1)﹣3,9;(2)≥9,12;(3)秒或秒.

    【分析】

    (1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;

    (2)由(1)得a=﹣3、b=9,则代数式|xa|﹣|xb|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;

    (3)先由点C表示的数是1,点B表示的数是9,计算出BC两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.

    【详解】

    解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,

    ∴|a+3|=0,(b﹣9)2=0,

    a=﹣3,b=9,

    故答案为:﹣3,9.

    (2)∵a=﹣3,b=9,

    ∴代数式|xa|﹣|xb|即代数式|x+3|﹣|x﹣9|,

    x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;

    当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,

    ∵﹣12≤2x﹣6<12,

    ∴﹣12≤|x+3|﹣|x﹣9|<12;

    x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,

    综上所述,|x+3|﹣|x﹣9|的最大值为12,

    故答案为:≥9,12.

    (3)∵点C表示的数是1,点B表示的数是9,

    BC两点之间的距离是9﹣1=8,

    当点Q与点C重合时,则2t=8,

    解得t=4,

    当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t

    根据题意得9﹣2t﹣(﹣3﹣t)=2×2t

    解得t

    当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t

    ∵1+(2t﹣8)=2t﹣7,

    ∴点Q表示的数是2t﹣7,

    根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),

    解得t

    综上所述,第秒或第秒,点PQ之间的距离是点BQ之间距离的2倍.

    【点睛】

    本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.

    2、-1

    【分析】

    由题意可知,将值代入即可.

    【详解】

    解:由题意得:

    解得

    【点睛】

    本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.

    3、

    (1)

    (2)

    【分析】

    (1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;

    (2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.

    (1)

    解:原式=

    (2)

    解:原式=

    【点睛】

    本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.

    4、64或﹣64

    【分析】

    根据平方根、立方根、有理数的乘方解决此题.

    【详解】

    解:∵a2=16,b3=27,

    a=±4,b=3.

    a=4,b=3时,ab=43=64.

    a=﹣4,b=3时,ab=(﹣4)3=﹣64.

    综上:ab=64或﹣64.

    【点睛】

    本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.

    5、

    【分析】

    根据立方根,算术平方根,绝对值的计算法则进行求解即可.

    【详解】

    解:

    【点睛】

    本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.

    6、(1);(2)

    【分析】

    (1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;

    (2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.

    【详解】

    (1)原式

    (2)原式

    【点睛】

    此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.

    7、1

    【分析】

    直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、有理数的乘方运算法则分别化简,再利用有理数的加减运算法则计算得出答案.

    【详解】

    解:

    =1+3﹣2﹣1

    =1.

    【点睛】

    本题主要考查了实数的混合运算,熟练掌握相关运算法则是解答本题的关键.

    8、x=5;y=2

    【分析】

    根据非负数的性质可得关于xy的方程组,求解可得其值;

    【详解】

    解:由题意可得

    联立得

    解方程组得:

    xy的值分别为5、2.

    【点睛】

    此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.

    9、

    (1)-2

    (2)1

    【分析】

    (1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;

    (2)先去绝对值,去括号,再进行实数的加、减混合计算即可;

    (1)

    解:

    (2)

    解:

    【点睛】

    本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.

    10、(1)1;(2)2

    【分析】

    (1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;

    (2)根据同分母分式的加减法法则计算.

    【详解】

    解:(1)原式=1+2-2 

    =1.

    (2)原式=

    =2.

    【点睛】

    此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键..

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共19页。试卷主要包含了下列等式正确的是,估算的值是在之间,下列说法中,正确的是,实数﹣2的倒数是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共21页。试卷主要包含了若,则的值为,以下正方形的边长是无理数的是,下列各数中,比小的数是,下列各式中,化简结果正确的是,对于两个有理数,3的算术平方根为等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共22页。试卷主要包含了在0.1010010001…,下列等式正确的是.,下列各数中,比小的数是,规定一种新运算,0.64的平方根是,关于的叙述,错误的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map