初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题
展开沪教版(上海)七年级数学第二学期第十二章实数重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、3的算术平方根为( )
A. B.9 C.±9 D.±
2、下列等式正确的是( )
A. B. C. D.
3、可以表示( )
A.0.2的平方根 B.的算术平方根
C.0.2的负的平方根 D.的立方根
4、实数﹣2的倒数是( )
A.2 B.﹣2 C. D.﹣
5、化简计算﹣的结果是( )
A.12 B.4 C.﹣4 D.﹣12
6、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )
A.4 B.6 C.12 D.36
7、下列各数是无理数的是( )
A. B.3.33 C. D.
8、下列说法正确的是( )
A.一个数的立方根有两个,它们互为相反数
B.负数没有立方根
C.任何数的立方根都只有一个
D.如果一个数有立方根,那么这个数也一定有平方根
9、下列计算正确的是( ).
A. B. C. D.
10、下列整数中,与-1最接近的是( )
A.2 B.3 C.4 D.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果一个数的平方等于16,那么这个数是________.
2、的平方根是______,______.
3、x、y表示两个数,规定新运算“*”如下:x*y=2x﹣3y,那么(3*5)*(﹣4)=_____.
4、若|2y+1|=0,则xy2的值是_____.
5、计算:______.
三、解答题(10小题,每小题5分,共计50分)
1、求下列各数的平方根:
(1)121 (2) (3)(-13)2 (4)
2、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b﹣9)2=0,c=1.
(1)a= ,b= ;
(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|x﹣a|﹣|x﹣b|取得最大值,最大值为 ;
(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t≤8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?
3、计算
4、已知一个正数x的平方根是a+3和2a-15,求a和x的值
5、计算:
(1).
(2)+()2﹣
6、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3﹣a3=(b﹣a)(b2+ab+a2).)
(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;
(2)已知两个“复合数”的差是42,求这两个“复合数”.
7、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.
(1)用xcm表示图中空白部分的面积;
(2)当x=5cm时空白部分面积为多少?
(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?
8、已知:,求x+17的算术平方根.
9、已知正数a的两个不同平方根分别是2x﹣2和6﹣3x,a﹣4b的算术平方根是4.
(1)求这个正数a以及b的值;
(2)求b2+3a﹣8的立方根.
10、计算:.
-参考答案-
一、单选题
1、A
【分析】
利用算术平方根的定义求解即可.
【详解】
3的算术平方根是.
故选:A.
【点睛】
本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.
2、C
【分析】
根据算术平方根的定义和性质,立方根的定义逐项分析判断即可
【详解】
A. ,故该选项不正确,不符合题意;
B. 无意义,故该选项不正确,不符合题意;
C. ,故该选项正确,符合题意;
D. ,故该选项不正确,不符合题意;
故选C
【点睛】
本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).
3、C
【分析】
根据平方根和算术平方根的定义解答即可.
【详解】
解:可以表示0.2的负的平方根,
故选:C.
【点睛】
此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.
4、D
【分析】
根据倒数的定义即可求解.
【详解】
解:-2的倒数是﹣.
故选:D
【点睛】
本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.
5、B
【分析】
根据算术平方根和立方根的计算法则进行求解即可.
【详解】
解:,
故选B.
【点睛】
本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.
6、D
【分析】
根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.
【详解】
解:∵一个正数a的两个不同平方根是2x-2和6-3x,
∴2x-2+6-3x=0,
解得:x=4,
∴2x-2=2×4-2=8-2=6,
∴正数a=62=36.
故选择D.
【点睛】
本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.
7、C
【分析】
无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.
【详解】
解:,是有理数,3.33和是有理数,是无理数,
故选:C.
【点睛】
本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.
8、C
【分析】
利用立方根的意义对每个选项的说法进行逐一判断即可,其中判断D还要结合平方根的含义.
【详解】
解:∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,
∴A选项说法不正确;
∵一个负数有一个负的立方根,
∴B选项说法不正确;
∵一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,
∴C选项说法正确;
∵一个负数有一个负的立方根,但负数没有平方根,
∴D选项说法不正确.
综上,说法正确的是C选项,
故选:C.
【点睛】
本题考查的是立方根的含义,考查一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0,同时考查负数没有平方根,熟悉以上基础知识是解本题的关键.
9、D
【分析】
由负数没有算术平方根可判断A,由算术平方根不可能是负数可判断B,C,由立方根的含义可判断D,从而可得答案.
【详解】
解:没有意义,故A不符合题意;
,故B不符合题意;
,故C不符合题意;
,运算正确,故D符合题意;
故选D
【点睛】
本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.
10、A
【分析】
先由无理数估算,得到,且接近3,即可得到答案.
【详解】
解:由题意,
∵,且接近3,
∴最接近的是整数2;
故选:A.
【点睛】
本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.
二、填空题
1、
【分析】
根据平方根的定义进行解答即可.
【详解】
解:∵
∴如果一个数的平方等于16,那么这个数是
故答案为:
【点睛】
本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)
2、±2 -8
【分析】
根据平方根的定义:如果对于一个数a和非负数b,有,那么a就叫做b的平方根;立方根的定义:对于c、d两个数,如果,那么c就叫做d的立方根,进行求解即可.
【详解】
解:∵,4的平方根为±2,
∴的平方根为±2,
,
故答案为:±2;-8.
【点睛】
本题主要考查了算术平方根,平方根和立方根,熟知相关定义是解题的关键.
3、-6
【分析】
根据找出新的运算方法,再根据新的运算方法计算即可.
【详解】
故答案为:
【点睛】
本题考查了新定义下的实数运算,解题关键是根据题目给出的式子,找出新的运算方法,再根据新的运算方法计算要求的式子.
4、
【分析】
先根据算术平方根和绝对值的非负性求出的值,再代入计算即可得.
【详解】
解:,
,
解得,
则,
故答案为:.
【点睛】
本题考查了算术平方根和绝对值的非负性、代数式求值,熟练掌握算术平方根和绝对值的非负性是解题关键.
5、2
【分析】
直接根据零指数幂、负整数指数幂、乘方的运算法则计算即可.
【详解】
解:原式.
故答案为:2.
【点睛】
本题考查了实数的加减运算,解题的关键是掌握运算法则,正确的进行计算.
三、解答题
1、 (1)±11; (2) ; (3)±13; (4)±8
【分析】
(1)直接根据平方根的定义求解;
(2)把带分数化成假分数,再根据平方根的定义求解;
(3)(4)先化简,再根据平方根的定义求解.
【详解】
含有乘方运算先求出它的幂,再开平方.
(1)因为(±11)2=121,所以121的平方根是±11;
(2),因为, 所以的平方根是;
(3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;
(4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.
【点睛】
本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.
2、(1)﹣3,9;(2)≥9,12;(3)秒或秒.
【分析】
(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;
(2)由(1)得a=﹣3、b=9,则代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;
(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.
【详解】
解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,
∴|a+3|=0,(b﹣9)2=0,
∴a=﹣3,b=9,
故答案为:﹣3,9.
(2)∵a=﹣3,b=9,
∴代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,
当x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;
当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,
∵﹣12≤2x﹣6<12,
∴﹣12≤|x+3|﹣|x﹣9|<12;
当x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,
综上所述,|x+3|﹣|x﹣9|的最大值为12,
故答案为:≥9,12.
(3)∵点C表示的数是1,点B表示的数是9,
∴B、C两点之间的距离是9﹣1=8,
当点Q与点C重合时,则2t=8,
解得t=4,
当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t,
根据题意得9﹣2t﹣(﹣3﹣t)=2×2t,
解得t=;
当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t,
∵1+(2t﹣8)=2t﹣7,
∴点Q表示的数是2t﹣7,
根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),
解得t=,
综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍.
【点睛】
本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.
3、
【分析】
直接根据有理数的乘方,算术平方根,立方根以及绝对值的性质化简各项,再进行加减运算得出答案.
【详解】
解:
=
=
【点睛】
本题主要考查了实数的运算,正确化简各数是解题的关键.
4、4,49
【分析】
根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.
【详解】
解:∵正数有2个平方根,它们互为相反数,
∴,
解得,
所以.
【点睛】
本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.
5、(1);(2)
【分析】
(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;
(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.
【详解】
(1)原式,
;
(2)原式,
.
【点睛】
此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.
6、(1)12不是复合数;证明见解析;(2)98和56.
【分析】
(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;
(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.
【详解】
(1)12不是复合数,
∵找不到两个整数a,b,使a3﹣b3=12,
故12不是复合数,
设“正点”P所表示的数为x(x为正整数),
则a=x﹣1,b=x+1,
∴(x+1)3﹣(x﹣1)3
=(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)
=2(3x2+1)
=6x2+2,
∴6x2+2﹣2=6x2一定能被6整除;
(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),
∵两个“复合数”的差是42,
∴(6m2+2)﹣(6n2+2)=42,
∴m2﹣n2=7,
∵m,n都是正整数,
∴,
∴,
∴6m2+2=98,6n2+2=56,
这两个“复合数”为98和56.
【点睛】
本题考查关于实数的新定义题型,理解新定义是解题的关键.
7、(1);(2);(3)13cm
【分析】
(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;
(2)将x=5代入计算可得;
(3)根据题意列出方程求解即可.
【详解】
解:(1)空白部分面积为;
(2)当x=5时,空白部分面积为.
(3)根据题意得,,
解得x=13或-13(舍去),
所以,大正方形的边长为13cm
【点睛】
此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.
8、3
【分析】
首先根据,求出x的值,然后代入x+17求解算术平方根即可.
【详解】
解:∵,
∴5x+32=-8,
解得:x=-8,
∴x+17=-8+17=9,
∵9的算术平方根为3,
∴x+17的算术平方根为 3,
故答案为:3.
【点睛】
此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.
9、(1),;(2)b2+3a﹣8的立方根是5
【分析】
(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;
(2)将(1)中所求a、b的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.
【详解】
解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x,
∴2x﹣2+6﹣3x=0,
∴x=4,
∴2x﹣2=6,
∴a=36,
∵a﹣4b的算术平方根是4,
∴a﹣4b=16,
∴36-4b=16
∴b=5;
(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,
∴b2+3a﹣8的立方根是5.
【点睛】
本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.
10、1
【分析】
分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.
沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共18页。试卷主要包含了下列各式正确的是.,有一个数值转换器,原理如下,100的算术平方根是,下列运算正确的是,3的算术平方根是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题,共19页。试卷主要包含了在下列各数,的算术平方根是,下列各数是无理数的是,若关于x的方程,下列各式中,化简结果正确的是等内容,欢迎下载使用。
初中数学第十二章 实数综合与测试达标测试: 这是一份初中数学第十二章 实数综合与测试达标测试,共19页。试卷主要包含了9的平方根是,3的算术平方根为,下列说法不正确的是,4的平方根是,若关于x的方程等内容,欢迎下载使用。

