


数学第十二章 实数综合与测试同步达标检测题
展开沪教版(上海)七年级数学第二学期第十二章实数专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、0.64的平方根是( )
A.0.8 B.±0.8 C.0.08 D.±0.08
2、下列说法正确的是( )
A.0.01是0.1的平方根
B.小于0.5
C.的小数部分是
D.任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方……如此进行下去,得到的数会越来越趋近1
3、下列说法不正确的是( )
A.0的平方根是0 B.一个负数的立方根是一个负数
C.﹣8的立方根是﹣2 D.8的算术平方根是2
4、估算的值是在( )之间
A.5和6 B.6和7 C.7和8 D.8和9
5、若 ,则 ( )
A. B. C. D.
6、下列各数是无理数的是( )
A. B.3.33 C. D.
7、三个实数,2,之间的大小关系( )
A.>>2 B.>2> C.2>> D.<2<
8、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为( )
A. B.7 C. D.1
9、4的平方根是( )
A.±2 B.﹣2 C.2 D.4
10、3的算术平方根是( )
A.±3 B. C.-3 D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、实数,在数轴上对应的点的位置如图所示,则|a-b|-|b+a|=______.
2、引入新数i,新数i满足分配律、结合律、交换律,已知,则_____.
3、已知的小数部分是a,的整数部分是b,则a+b=_________.
4、若是整数,则正整数的最小值是______.
5、已知432=1849,442=1936,452=2025,462=2116,若n为整数且n<<n+1,则n的值是________.
三、解答题(10小题,每小题5分,共计50分)
1、解方程:
(1)x2=81;
(2)(x﹣1)3=27.
2、求下列各式中x的值.
(1)(x-3)3=4
(2)9(x+2)2=16
3、计算:.
4、计算
5、计算:
6、已知正数a的两个不同平方根分别是2x﹣2和6﹣3x,a﹣4b的算术平方根是4.
(1)求这个正数a以及b的值;
(2)求b2+3a﹣8的立方根.
7、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b﹣9)2=0,c=1.
(1)a= ,b= ;
(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|x﹣a|﹣|x﹣b|取得最大值,最大值为 ;
(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t≤8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?
8、已知的平方根是,的立方根是2,是的整数部分,求的算术平方根.
9、已知的立方根是2,算术平方根是4,求的算术平方根.
10、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记.
例如:,∴,则
(1)判断7643和4631是否为“多多数”?请说明理由;
(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”.
-参考答案-
一、单选题
1、B
【分析】
根据如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,由此求解即可.
【详解】
解:∵(±0.8)2=0.64 ,
∴0.64的平方根是±0.8,
故选:B.
【点睛】
本题主要考查了平方根的概念,解题的关键在于掌握平方根的正负两种情况.
2、C
【分析】
根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可.
【详解】
解:A、0.1是0.01的平方根,原说法错误,不符合题意;
B、由,得,原说法错误,不符合题意;
C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;
D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;
故选:C.
【点睛】
本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键.
3、D
【分析】
直接利用算术平方根、平方根、立方根的定义分析得出答案.
【详解】
解:A、0的平方根是0,原说法正确,故此选项不符合题意;
B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;
C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;
D、8的算术平方根是2,原说法不正确,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.
4、C
【分析】
根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故.
【详解】
∵
∴
∴
故选:C.
【点睛】
本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.
5、B
【分析】
先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.
【详解】
解:,
或(舍去),
,
故选:B.
【点睛】
本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.
6、C
【分析】
无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.
【详解】
解:,是有理数,3.33和是有理数,是无理数,
故选:C.
【点睛】
本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.
7、A
【分析】
,根据被开方数的大小即判断这三个数的大小关系
【详解】
2<<
故选A
【点睛】
本题考查了实数大小比较,掌握无理数的估算是解题的关键.
8、A
【分析】
定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.
【详解】
解:且当时,▽a=a,
▽(-3)=-3,
4+▽(2-5)=4-3=1>-2,
当a>-2时,▽a=-a,
▽[4+▽(2-5)]=▽1=-1,
故选:A.
【点睛】
此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
9、A
【分析】
根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根.
【详解】
解:∵
∴4的平方根是,
故选:A.
【点睛】
本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.
10、B
【分析】
根据算术平方根的定义求解即可,平方根:如果一个数的平方等于,那么这个数就叫的平方根,其中属于非负数的平方根称之为算术平方根.
【详解】
解:3的算术平方根是
故选B
【点睛】
本题考查了算术平方根的定义,掌握定义是解题的关键.
二、填空题
1、2b
【分析】
由题意根据绝对值的意义即非负数的绝对值是它本身,负数的绝对值是它的相反数.同时注意数轴上右边的数总大于左边的数进行分析计算即可解答.
【详解】
解:由数轴可得:a-b<0,b+a<0,
∴|a-b|-|b+a|=b-a+b+a=2b.
故答案为:2b.
【点睛】
本题主要考查实数与数轴之间的对应关系及绝对值的化简,注意掌握根据点在数轴上的位置来正确判断出代数式值的符号.
2、2
【分析】
先根据平方差公式化简,再把代入计算即可.
【详解】
解:.
故答案为2.
【点睛】
本题考查了新定义运算及平方差公式,熟练掌握平方差公式是解答本题的关键.
3、
【分析】
先分别求出和的范围,得到a、b的值,再代入a+b计算即可.
【详解】
∵2<<3,2<<3,
∴a=−2,b=2,
a+b=−2+2=,
故答案为.
【点睛】
本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.
4、21
【分析】
由,要使是整数,则n必须是21的倍数,且这个倍数必须为整数的平方,由此可求得最小的整数n.
【详解】
∵
∴84n必须为21的整数的平方倍数,即,其中m为正整数
当m=1时,n最小,且最小值为21
故答案为:21
【点睛】
本题考查了算术平方根,算术平方根的性质,对84分解质因数、掌握可开得尽方的数的特征是关键.
5、44
【分析】
由题意可直接进行求解.
【详解】
解:∵442=1936,452=2025,
∴,
∴,
∴;
故答案为44.
【点睛】
本题主要考查无理数的估算,熟练掌握无理数的估算是解题的关键.
三、解答题
1、(1)x=±9;(2)x=4
【分析】
(1)方程利用平方根定义开方即可求出解;
(2)方程利用立方根定义开立方即可求出解.
【详解】
解:(1)开方得:x=±9;
(2)开立方得:x﹣1=3,
解得:x=4.
【点睛】
本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).
2、(1)x=5;(2)x=-或x=.
【分析】
(1)把x-3可做一个整体求出其立方根,进而求出x的值;
(2)把x+2可做一个整体求出其平方根,进而求出x的值.
【详解】
解:(1) (x−3)3=4,
(x-3)3=8,
x-3=2,
∴x=5;
(2)9(x+2)2=16,
(x+2)2=,
x+2=,
∴x=-或x=.
【点睛】
本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
3、.
【分析】
先计算算术平方根、立方根、乘方、化简绝对值,再计算实数的加减法即可得.
【详解】
解:原式
.
【点睛】
本题考查了算术平方根、立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.
4、
【分析】
根据立方根,算术平方根,绝对值的计算法则进行求解即可.
【详解】
解:
.
【点睛】
本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.
5、
【分析】
先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.
【详解】
解:原式=1-8+4+
=.
【点睛】
本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.
6、(1),;(2)b2+3a﹣8的立方根是5
【分析】
(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;
(2)将(1)中所求a、b的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.
【详解】
解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x,
∴2x﹣2+6﹣3x=0,
∴x=4,
∴2x﹣2=6,
∴a=36,
∵a﹣4b的算术平方根是4,
∴a﹣4b=16,
∴36-4b=16
∴b=5;
(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,
∴b2+3a﹣8的立方根是5.
【点睛】
本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.
7、(1)﹣3,9;(2)≥9,12;(3)秒或秒.
【分析】
(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;
(2)由(1)得a=﹣3、b=9,则代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;
(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.
【详解】
解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,
∴|a+3|=0,(b﹣9)2=0,
∴a=﹣3,b=9,
故答案为:﹣3,9.
(2)∵a=﹣3,b=9,
∴代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,
当x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;
当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,
∵﹣12≤2x﹣6<12,
∴﹣12≤|x+3|﹣|x﹣9|<12;
当x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,
综上所述,|x+3|﹣|x﹣9|的最大值为12,
故答案为:≥9,12.
(3)∵点C表示的数是1,点B表示的数是9,
∴B、C两点之间的距离是9﹣1=8,
当点Q与点C重合时,则2t=8,
解得t=4,
当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t,
根据题意得9﹣2t﹣(﹣3﹣t)=2×2t,
解得t=;
当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t,
∵1+(2t﹣8)=2t﹣7,
∴点Q表示的数是2t﹣7,
根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),
解得t=,
综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍.
【点睛】
本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.
8、
【分析】
直接利用平方根以及立方根和估算无理数的大小得出a,b,c的值进而得出答案.
【详解】
解:∵2a-1的平方根是±3,
∴2a-1=9,
解得:a=5,
∵3a+b-9的立方根是2,
∴15+b-9=8,
解得:b=2,
∵4<<5,c是的整数部分,
∴c=4,
∴a+2b+c=5+4+4=13,
∴a+2b+c的算术平方根为
【点睛】
此题主要考查了平方根以及立方根和估算无理数的大小,正确得出a,b,c的值是解题关键.
9、
【分析】
根据立方根、算术平方根解决此题.
【详解】
解:由题意得:2a+4=8,3a+b-1=16.
∴a=2,b=11.
∴4a+b=8+11=19.
∴4a+b的算术平方根为.
【点睛】
本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键.
10、
(1)7643是“多多数”, 4631不是“多多数”,
(2)5421或6734
【分析】
(1)根据新定义,即可判断;
(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出A、F(A),根据为一个能被13整除的“多多数”,且,,列出关系式,进而求解.
(1)
在7643中,7-4=3,6-3=3,
∴7643是“多多数”,
在4631中,3-3=1,6-1=5,
∴4631不是“多多数”,
(2)
设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,
∴A表示的数为
∴
∴
∵
∴
∴
∵个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,
∴,解得
∴x、y的范围为,且x、y为整数
∵若为一个能被13整除的“多多数”,
∴
当时,,,
y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是
同理,当时,,,没有符合条件的y;
当时,,,没有符合条件的y;
当时,,,符合条件的;
当时,,,没有符合条件的y;
当时,,,没有符合条件的y;
综上符合条件的是、
当时A为5421,
当时A为6734
综上足条件的“多多数”为5421或6734.
【点睛】
本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题,共22页。试卷主要包含了若,则整数a的值不可能为,下列各组数中相等的是,已知a=,b=-|-|,c=,的算术平方根是,下列说法正确的是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时训练: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时训练,共24页。试卷主要包含了下列各式正确的是.,下列实数比较大小正确的是,3的算术平方根为,对于两个有理数,100的算术平方根是等内容,欢迎下载使用。
初中数学第十二章 实数综合与测试达标测试: 这是一份初中数学第十二章 实数综合与测试达标测试,共19页。试卷主要包含了9的平方根是,3的算术平方根为,下列说法不正确的是,4的平方根是,若关于x的方程等内容,欢迎下载使用。