


初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题
展开沪教版(上海)七年级数学第二学期第十二章实数专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、计算2﹣1+30=( )
A. B.﹣1 C.1 D.
2、点A在数轴上的位置如图所示,则点A表示的数可能是( )
A. B. C. D.
3、在实数中,无理数的个数是( )
A.1 B.2 C.3 D.4
4、下列整数中,与-1最接近的是( )
A.2 B.3 C.4 D.5
5、以下正方形的边长是无理数的是( )
A.面积为9的正方形 B.面积为49的正方形
C.面积为8的正方形 D.面积为25的正方形
6、若关于x的方程(k2﹣9)x2+(k﹣3)x=k+6是一元一次方程,则k的值为( )
A.9 B.﹣3 C.﹣3或3 D.3
7、已知a=,b=-|-|,c=(-2)3,则a,b,c的大小关系是( )
A.b<a<c B.b<c<a C.c<b<a D.a<c<b
8、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).
A.2个 B.3个 C.4个 D.5个
9、下列四个数中,最小的数是( )
A.﹣3 B.﹣ C.0 D.﹣π
10、下列各数是无理数的是( )
A.-3 B. C.2.121121112 D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知432=1849,442=1936,452=2025,462=2116,若n为整数,且n<<n+1,则n的值为 _____.
2、一列数按某规律排列如下,…若第n个数为,则n=_____.
3、绝对值不大于4且不小于的整数分别有______.
4、已知a,b 是有理数,且满足,那么a=________,b =________.
5、已知x、y满足关系式=0,则xy的算术平方根为______.
三、解答题(10小题,每小题5分,共计50分)
1、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记.
例如:,∴,则
(1)判断7643和4631是否为“多多数”?请说明理由;
(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”.
2、已知:,求x+17的算术平方根.
3、任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72第一次[]=8,第二次[]=2,第三次[]=1,这样对72只需进行3次操作变为1.
(1)对10进行1次操作后变为_______,对200进行3次作后变为_______;
(2)对实数m恰进行2次操作后变成1,则m最小可以取到_______;
(3)若正整数m进行3次操作后变为1,求m的最大值.
4、直接写出结果:
(1)____________;
(2)____________;
(3)的立方根=____________;
(4)若x2=(﹣7)2,则x=____________.
5、求下列各数的平方根:
(1)121 (2) (3)(-13)2 (4)
6、解方程,求x的值.
(1)
(2)
7、已知a,b,c,d是有理数,对于任意,我们规定:.
例如:.
根据上述规定解决下列问题:
(1)_________;
(2)若,求的值;
(3)已知,其中是小于10的正整数,若x是整数,求的值.
8、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为.
参考小燕同学的做法,解答下列问题:
(1)写出的小数部分为________;
(2)已知与的小数部分分别为a和b,求a2+2ab+b2的值;
(3)如果,其中x是整数,0<y<1,那么=________
(4)设无理数(m为正整数)的整数部分为n,那么的小数部分为________(用含m,n的式子表示).
9、解答下列各题:
(1)计算:
①
②
(2)分解因式:
10、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3﹣a3=(b﹣a)(b2+ab+a2).)
(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;
(2)已知两个“复合数”的差是42,求这两个“复合数”.
-参考答案-
一、单选题
1、D
【分析】
利用负整数指数幂和零指数幂的意义进行化简计算即可.
【详解】
解:原式=+1=.
故选:D.
【点睛】
本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.
2、A
【分析】
根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.
【详解】
解:观察得到点A表示的数在4至4.5之间,
A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;
B、∵9<10<16,∴3<<4,故该选项不符合题意;
C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;
D、∵25<30<36,∴5<<6,故该选项不符合题意;
故选:A.
【点睛】
本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.
3、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=2,=2,,
∴无理数只有,共2个.
故选:B.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
4、A
【分析】
先由无理数估算,得到,且接近3,即可得到答案.
【详解】
解:由题意,
∵,且接近3,
∴最接近的是整数2;
故选:A.
【点睛】
本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.
5、C
【分析】
理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.
【详解】
解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;
B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;
C、面积为8的正方形的边长为,是无理数,故本选项符合题意;
D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.
故选:C.
【点睛】
本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.
6、B
【分析】
含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.
【详解】
解: 关于x的方程(k2﹣9)x2+(k﹣3)x=k+6是一元一次方程,
由①得:
由②得:
所以:
故选B
【点睛】
本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.
7、C
【分析】
本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较.
【详解】
解:由题意得:a===4,b==,c==-8,
∴c<b<a.
故选:C.
【点睛】
本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键.
8、D
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:是有理数,
是无限循环小数,是有理数,
是分数,是有理数,
,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,
故选:D.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
9、D
【分析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.
【详解】
解:∵,,,,
∴,
∴最小的数是,
故选D.
【点睛】
此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
10、D
【分析】
根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.
【详解】
A、-3是整数,属于有理数.
B、是分数,属于有理数.
C、2.121121112是有限小数,属于有理数.
D、是无限不循环小数,属于无理数.
故选:D.
【点睛】
本题主要是考察无理数的概念,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.
二、填空题
1、44
【分析】
由已知条件的提示可得,即,从而可得答案.
【详解】
解:,
∴即
又∵,n为整数,
.
故答案为:44.
【点睛】
本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.
2、50
【分析】
根据题目中的数据可以发现,分子变化是,…,分母变化是,…,从而可以求得第个数为时的值,本题得以解决.
【详解】
解:
∴可写成
∴分母为10开头到分母为1的数有10个,分别为
∴第n个数为,则n=1+2+3+4+…+9+5=50,
故答案为50.
【点睛】
本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.
3、4
【分析】
根据绝对值的意义及实数的大小比较可直接进行求解.
【详解】
解:由绝对值不大于4且不小于的整数分别有4和;
故答案为4和.
【点睛】
本题主要考查绝对值的意义及实数的大小比较,熟练掌握绝对值的意义及实数的大小比较是解题的关键.
4、-2 -1
【分析】
利用平方与算术平方根的非负性即可解决.
【详解】
∵,,且
∴,
∴,
故答案为:-2,-1
【点睛】
本题考查了有理数的平方的非负性质及算术平方根的非负性质,即几个非负数的和为零,则这几个数都为零.掌握这个性质是本题的关键.
5、4
【分析】
直接利用算术平方根以及偶次方的性质得出x,y的值,进而得出答案.
【详解】
解:∵,
∴x+4=0,y-2=0,
解得:x=-4,y=2,
故xy=(-4)2=16,16的算术平方根是:4.
故答案为:4.
【点睛】
本题主要考查了算术平方根以及偶次方的性质,正确得出x,y的值是解题关键.
三、解答题
1、
(1)7643是“多多数”, 4631不是“多多数”,
(2)5421或6734
【分析】
(1)根据新定义,即可判断;
(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出A、F(A),根据为一个能被13整除的“多多数”,且,,列出关系式,进而求解.
(1)
在7643中,7-4=3,6-3=3,
∴7643是“多多数”,
在4631中,3-3=1,6-1=5,
∴4631不是“多多数”,
(2)
设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,
∴A表示的数为
∴
∴
∵
∴
∴
∵个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,
∴,解得
∴x、y的范围为,且x、y为整数
∵若为一个能被13整除的“多多数”,
∴
当时,,,
y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是
同理,当时,,,没有符合条件的y;
当时,,,没有符合条件的y;
当时,,,符合条件的;
当时,,,没有符合条件的y;
当时,,,没有符合条件的y;
综上符合条件的是、
当时A为5421,
当时A为6734
综上足条件的“多多数”为5421或6734.
【点睛】
本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.
2、3
【分析】
首先根据,求出x的值,然后代入x+17求解算术平方根即可.
【详解】
解:∵,
∴5x+32=-8,
解得:x=-8,
∴x+17=-8+17=9,
∵9的算术平方根为3,
∴x+17的算术平方根为 3,
故答案为:3.
【点睛】
此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.
3、(1)3;1;(2);(3)的最大值为255
【详解】
解:(1)∵,
∴,
∴,
∴对10进行1次操作后变为3;
同理可得,
∴,
同理可得,
∴,
同理可得,
∴,
∴对200进行3次作后变为1,
故答案为:3;1;
(2)设m进行第一次操作后的数为x,
∵,
∴.
∴.
∴.
∵要经过两次操作.
∴.
∴.
∴.
故答案为:.
(3)设m经过第一次操作后的数为n,经过第二次操作后的数为x,
∵,
∴.
∴.
∴.
.
∴.
∵要经过3次操作,故.
∴.
∵是整数.
∴的最大值为255.
【点睛】
本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.
4、(1)8;(2)0;(3)2;(4)
【分析】
(1)根据算术平方根的计算法则求解即可;
(2)根据算术平方根的计算法则求解即可;
(3)根据立方根的求解方法求解即可;
(4)根据求平方根的方法解方程即可.
【详解】
解:(1)
,
故答案为:8;
(2)
,
故答案为:0;
(3)∵,
∴的立方根是2,
故答案为:2;
(4)∵x2=(﹣7)2,
∴x2=49,
∴x=±7.
故答案为:±7.
【点睛】
本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.
5、 (1)±11; (2) ; (3)±13; (4)±8
【分析】
(1)直接根据平方根的定义求解;
(2)把带分数化成假分数,再根据平方根的定义求解;
(3)(4)先化简,再根据平方根的定义求解.
【详解】
含有乘方运算先求出它的幂,再开平方.
(1)因为(±11)2=121,所以121的平方根是±11;
(2),因为, 所以的平方根是;
(3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;
(4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.
【点睛】
本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.
6、(1)或 ;(2)x=−
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)把x−1可做一个整体求出其立方根,进而求出x的值.
【详解】
解:(1),
,
或 ;
(2)8(x−1)3=−27,
(x−1)3=−,
x−1=−,
x=−.
【点睛】
本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.
7、
(1)-5
(2)
(3)k=1,4,7.
【分析】
(1)根据规定代入数据求解即可;
(2)根据规定代入整式,利用方程的思想求解即可;
(3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.
(1)
解:;
(2)
解:
即:
(3)
解:,
即:
因为是小于10的正整数且x是整数,
所以k=1时,x=3;k=4时,x=4;k=7时,x=5.
所以k=1,4,7.
【点睛】
本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.
8、(1);(2)1;(3);(4)
【分析】
(1)由题意易得,则有的整数部分为3,然后问题可求解;
(2)由题意易得,则有,,然后可得,然后根据完全平方公式可进行求解;
(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;
(4)根据题意可直接进行求解.
【详解】
解:(1)∵,
∴的整数部分为3,
∴的小数部分为;
故答案为;
(2)∵,
∴,,
∵与的小数部分分别为a和b,
∴,
∴;
(3)由可知,
∵,
∴的小数部分为,
∵x是整数,0<y<1,
∴,
∴;
故答案为;
(4)∵无理数(m为正整数)的整数部分为n,
∴的小数部分为,
∴的小数部分即为的小数部分加1,为;
故答案为.
【点睛】
本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.
9、(1)①;②;(2)
【分析】
(1)①原式利用算术平方根、立方根性质,乘方的意义,以及绝对值的代数意义计算即可得到结果;②根据幂的乘方与积的乘方以及同底数幂的乘法法则进行计算,再进行合并同类项合并即可;
(2)原式提取公因式x,再利用完全平方公式分解即可.
【详解】
解:(1)①
②
(2)
【点睛】
此题考查了实数的运算、整式的乘除运算以及提公因式法与公式法的综合运用的知识点,熟练掌运算以及相关法则、方法是解本题的关键.
10、(1)12不是复合数;证明见解析;(2)98和56.
【分析】
(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;
(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.
【详解】
(1)12不是复合数,
∵找不到两个整数a,b,使a3﹣b3=12,
故12不是复合数,
设“正点”P所表示的数为x(x为正整数),
则a=x﹣1,b=x+1,
∴(x+1)3﹣(x﹣1)3
=(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)
=2(3x2+1)
=6x2+2,
∴6x2+2﹣2=6x2一定能被6整除;
(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),
∵两个“复合数”的差是42,
∴(6m2+2)﹣(6n2+2)=42,
∴m2﹣n2=7,
∵m,n都是正整数,
∴,
∴,
∴6m2+2=98,6n2+2=56,
这两个“复合数”为98和56.
【点睛】
本题考查关于实数的新定义题型,理解新定义是解题的关键.
数学七年级下册第十二章 实数综合与测试课堂检测: 这是一份数学七年级下册第十二章 实数综合与测试课堂检测,共19页。试卷主要包含了16的平方根是,下列说法中正确的有,以下正方形的边长是无理数的是,下列各组数中相等的是,估计的值应该在.,9的平方根是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共18页。试卷主要包含了下列说法中错误的是,的算术平方根是,以下正方形的边长是无理数的是,若与互为相反数,则a,下列各式中,化简结果正确的是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题,共21页。试卷主要包含了3的算术平方根为,16的平方根是,下列整数中,与-1最接近的是,规定一种新运算等内容,欢迎下载使用。