


沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题
展开沪教版(上海)七年级数学第二学期第十二章实数综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若一个数的算术平方根与它的立方根的值相同,则这个数是( )
A.1 B.0和1 C.0 D.非负数
2、下列说法正确的是( )
A.的相反数是 B.2是4的平方根
C.是无理数 D.
3、16的平方根是( )
A.±8 B.8 C.4 D.±4
4、的算术平方根是( )
A.2 B. C. D.
5、下列各数是无理数的是( )
A. B.3.33 C. D.
6、下列等式正确的是( )
A. B. C. D.
7、数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是( )
A. B. C. D.
8、下列各数中,最小的数是( )
A.0 B. C. D.﹣3
9、在实数中,无理数的个数是( )
A.1 B.2 C.3 D.4
10、下列等式正确的是( ).
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、比较大小:___.(用“>”,“<”或“=”填空)
2、如果一个正数x的平方根是2a﹣3和5﹣a,那么x的值是 _____.
3、计算:=___.
4、在﹣(﹣),﹣1,|3﹣π|,0这四个数中,最小的数是 _____.
5、如果,那么=_____.
三、解答题(10小题,每小题5分,共计50分)
1、计算:(1);
(2).
2、计算:.
3、计算:.
4、解方程,求x的值.
(1)
(2)
5、求下列各式中的x:
(1);
(2).
6、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”.将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记.
例如:,∴,则
(1)判断7643和4631是否为“多多数”?请说明理由;
(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”.
7、直接写出结果:
(1)____________;
(2)____________;
(3)的立方根=____________;
(4)若x2=(﹣7)2,则x=____________.
8、计算:(π-4)0+|-6|-+
9、如图,数轴的原点为O,点A、B、C是数轴上的三点,点B对应的数是1,AB=6,BC=2,动点P、Q同时分别从A、C出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).
(1)点A表示的数为 ,点C表示的数为 ;
(2)求t为何值时,点P与点Q能够重合?
(3)是否存在某一时刻t,使点O平分线段PQ且点P与点Q在原点的异侧?若存在,请求出满足条件的t值.若不存在,请说明理由.
10、计算
(1);
(2)
-参考答案-
一、单选题
1、B
【分析】
根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.
【详解】
解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,
∴一个数的算术平方根与它的立方根的值相同的是0和1,
故选B.
【点睛】
主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.
2、B
【分析】
根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.
【详解】
解:A. 负数没有平方根,故无意义,A错误;
B.,故2是4的平方根,B正确;
C.是有理数,故C错误;
D. ,故D错误;
故选B.
【点睛】
本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.
3、D
【分析】
根据平方根可直接进行求解.
【详解】
解:∵(±4)2=16,
∴16的平方根是±4.
故选:D.
【点睛】
本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.
4、A
【分析】
根据算术平方根的定义即可求出结果.
【详解】
解:=4,4的算术平方根是2.
故选:A.
【点睛】
此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.
5、C
【分析】
无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.
【详解】
解:,是有理数,3.33和是有理数,是无理数,
故选:C.
【点睛】
本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.
6、C
【分析】
根据算术平方根的定义和性质,立方根的定义逐项分析判断即可
【详解】
A. ,故该选项不正确,不符合题意;
B. 无意义,故该选项不正确,不符合题意;
C. ,故该选项正确,符合题意;
D. ,故该选项不正确,不符合题意;
故选C
【点睛】
本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).
7、C
【分析】
首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由AB=AC利用两点间的距离公式便可解答.
【详解】
解:∵数轴上表示1,的对应点分别为A,B,
∴AB=−1,
∵点B关于点A的对称点为C,
∴AC=AB.
∴点C的坐标为:1−(−1)=2−.
故选:C.
【点睛】
本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.
8、C
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:,
所给的各数中,最小的数是.
故选:C.
【点睛】
本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
9、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=2,=2,,
∴无理数只有,共2个.
故选:B.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
10、由不等式的性质可知:5-2<−2<6-2,即3<−2<
故选:C.
【点睛】
本题主要考查的是估算无理数的大小,明确被开方数越大对应的算术平方根也越大是解题的关键.
4.C
【分析】
分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.
【详解】
解:A、,故此选项错误;
B、,故此选项错误;
C、由B得此选项正确;
D、,故此选项错误.
故选:C.
【点睛】
此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.
二、填空题
1、>
【分析】
先求出,然后利用作差法得到,即可得到答案.
【详解】
解:∵,
∴,
∴,
∴,
故答案为:>.
【点睛】
本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法.
2、49
【分析】
一个正数的平方根性质是互为相反数得出2a﹣3+5﹣a=0,解方程求出a =-2,再求平方根,利用平方根求出原数即可
【详解】
解:∵一个正数x的平方根是2a﹣3和5﹣a,
∴2a﹣3+5﹣a=0,
解得a =-2,
当a =-2时2a﹣3=-2×2-3=-7,
∴x=(-7)2=49.
故答案为:49.
【点睛】
本题考查一个正数x的平方根性质,一个正数有两个平方根,它们是互为相反数,0的平方根是0,负数没有平方根,根据平方根性质列方程是解题关键.
3、1
【分析】
根据平方和立方根的定义分别化简,再计算算术平方根即可.
【详解】
解:,
故答案为:1.
【点睛】
本题考查了实数的运算,解题的关键是掌握算术平方根和立方根的定义.
4、-1
【分析】
先运用去括号、去绝对值的知识化简各数,然后根据实数的大小比较法则解答即可.
【详解】
解∵﹣(﹣)=,﹣1,|3﹣π|=π-3,0,
∴−1<0<π-3<,
∴这四个数中,最小的数是−1.
故填:−1.
【点睛】
本题主要考查了实数的大小比较法则、去绝对值、去括号等知识点,正数都大于零,负数都小于零,正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.
5、
【分析】
本题可利用立方根的定义直接求解.
【详解】
∵,
∴.
故填:.
【点睛】
本题考查立方根的定义:如果一个数的立方等于a,则这个数称为a的立方根使用时和平方根定义对比记忆.
三、解答题
1、(1);(2).
【分析】
(1)由题意利用算术平方根和立方根的性质进行化简计算即可;
(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.
【详解】
解:(1)
(2)
【点睛】
本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.
2、2
【分析】
先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.
3、
【分析】
根据有理数的乘方运算,有理数的乘方运算,化简绝对值,最后进行实数的混合运算即可
【详解】
解:原式.
【点睛】
本题考查了实数的混合运算,正确的计算是解题的关键.
4、(1)或 ;(2)x=−
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)把x−1可做一个整体求出其立方根,进而求出x的值.
【详解】
解:(1),
,
或 ;
(2)8(x−1)3=−27,
(x−1)3=−,
x−1=−,
x=−.
【点睛】
本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.
5、(1);(2)
【分析】
(1)根据等式的性质和平方根的意义进行计算即可;
(2)根据等式的性质和立方根的意义进行计算即可.
【详解】
解:(1),
两边都除以4得,,
所以,;
(2),
两边都减1得,,
所以,,
解得,.
【点睛】
本题考查等式的性质、立方根、平方根的意义,解题的关键是掌握等式的性质、平方根、立方根的意义是正确解答的关键.
6、
(1)7643是“多多数”, 4631不是“多多数”,
(2)5421或6734
【分析】
(1)根据新定义,即可判断;
(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出A、F(A),根据为一个能被13整除的“多多数”,且,,列出关系式,进而求解.
(1)
在7643中,7-4=3,6-3=3,
∴7643是“多多数”,
在4631中,3-3=1,6-1=5,
∴4631不是“多多数”,
(2)
设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,
∴A表示的数为
∴
∴
∵
∴
∴
∵个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,
∴,解得
∴x、y的范围为,且x、y为整数
∵若为一个能被13整除的“多多数”,
∴
当时,,,
y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是
同理,当时,,,没有符合条件的y;
当时,,,没有符合条件的y;
当时,,,符合条件的;
当时,,,没有符合条件的y;
当时,,,没有符合条件的y;
综上符合条件的是、
当时A为5421,
当时A为6734
综上足条件的“多多数”为5421或6734.
【点睛】
本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解.
7、(1)8;(2)0;(3)2;(4)
【分析】
(1)根据算术平方根的计算法则求解即可;
(2)根据算术平方根的计算法则求解即可;
(3)根据立方根的求解方法求解即可;
(4)根据求平方根的方法解方程即可.
【详解】
解:(1)
,
故答案为:8;
(2)
,
故答案为:0;
(3)∵,
∴的立方根是2,
故答案为:2;
(4)∵x2=(﹣7)2,
∴x2=49,
∴x=±7.
故答案为:±7.
【点睛】
本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.
8、9
【分析】
根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.
【详解】
解:原式
【点睛】
本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.
9、(1)-5,3;(2)t=4;(3)存在,t=,理由见解析.
【分析】
(1)由点B对应的数及线段AB、BC的长,可找出点A、C对应的数;
(2)根据点P、Q的出发点、速度及方向,由追击的等量关系列出含t的方程,解方程即可;
(3)由题意得OP=OQ,据此列一元一次方程,解此方程即可.
【详解】
解:(1)1-6=-5,1+2=3
即点A表示的数为 -5,点C表示的数为3,
故答案为:-5,3;
(2)若点P与点Q能够重合,则AP-CQ=AC,
即3t-t=8
2t=8
t=4
答:当t=4时,点P与点Q能够重合.
(3)存在,理由如下:
若点O为PQ中点,且点P与点Q在原点的异侧,即OP=OQ
5-3t=3+t
4t=2
t=
答:当t=时,点O平分线段PQ且点P与点Q在原点的异侧.
【点睛】
本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键.
10、(1)1;(2).
【分析】
(1)计算乘方,零指数幂,算术平方根,负指数幂,再计算加减法即可;
(2)先立方根,零指数幂,绝对值化简,去括号合并即可.
【详解】
解:(1),
=,
=1;
(2),
=,
=.
【点睛】
本题考查实数混合计算,零指数幂,负指数幂,算术平方根,立方根,绝对值,掌握以上知识是解题关键.
数学七年级下册第十二章 实数综合与测试课后测评: 这是一份数学七年级下册第十二章 实数综合与测试课后测评,共23页。试卷主要包含了9的平方根是,若 ,则,64的立方根为.,下列各式中正确的是,若,则的值为等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共19页。试卷主要包含了如果a,规定一种新运算,下列运算正确的是,下列各数是无理数的是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共22页。试卷主要包含了关于的叙述,错误的是,下列等式正确的是.,﹣π,﹣3,,的大小顺序是,下列判断,下列运算正确的是等内容,欢迎下载使用。