


初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习
展开沪教版(上海)七年级数学第二学期第十二章实数同步练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若,则的值为( )
A. B. C. D.或
2、点A在数轴上的位置如图所示,则点A表示的数可能是( )
A. B. C. D.
3、下列说法正确的是( )
A.0.01是0.1的平方根
B.小于0.5
C.的小数部分是
D.任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方……如此进行下去,得到的数会越来越趋近1
4、下列说法不正确的是( )
A.0的平方根是0 B.一个负数的立方根是一个负数
C.﹣8的立方根是﹣2 D.8的算术平方根是2
5、在实数,,,,,,,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有( )个
A.2 B.3 C.4 D.5
6、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).
A.2个 B.3个 C.4个 D.5个
7、在实数中,无理数的个数是( )
A.1 B.2 C.3 D.4
8、三个实数,2,之间的大小关系( )
A.>>2 B.>2> C.2>> D.<2<
9、下列语句正确的是( )
A.8的立方根是2 B.﹣3是27的立方根
C.的立方根是± D.(﹣1)2的立方根是﹣1
10、化简计算﹣的结果是( )
A.12 B.4 C.﹣4 D.﹣12
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若规定“※”的运算法则为:,例如:则 =_________.
2、当______ 时,分式的值为零
3、计算:______.
4、已知x、y满足关系式=0,则xy的算术平方根为______.
5、若,则_________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,数轴的原点为O,点A、B、C是数轴上的三点,点B对应的数是1,AB=6,BC=2,动点P、Q同时分别从A、C出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).
(1)点A表示的数为 ,点C表示的数为 ;
(2)求t为何值时,点P与点Q能够重合?
(3)是否存在某一时刻t,使点O平分线段PQ且点P与点Q在原点的异侧?若存在,请求出满足条件的t值.若不存在,请说明理由.
2、计算:
(1).
(2)+()2﹣
3、计算:.
4、计算
(1)
(2)
5、计算:
6、如果一个四位数m满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为,十位数字与个位数字之和记为,记F(m),若F(m)为整效,则称这个数为“运算数“,例如:∵F(5332)3,3是整数,∴5332是“运算数”;∵F(1722),不是整数,∴1722不是“运算数”.
(1)请判断9981与2314是否是“运算数”,并说明理由.
(2)若自然数s和t都是“运算数”,其中s=8910+11x(2≤x≤8,且x为整数);t的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且F(t)=4,规定:k,求所有k的值.
7、计算
8、求下列各式中的x:
(1);
(2).
9、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?
10、已知:,求x+17的算术平方根.
-参考答案-
一、单选题
1、C
【分析】
化简后利用平方根的定义求解即可.
【详解】
解:∵,
∴x2-9=55,
∴x2=64,
∴x=±8,
故选C.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.
2、A
【分析】
根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.
【详解】
解:观察得到点A表示的数在4至4.5之间,
A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;
B、∵9<10<16,∴3<<4,故该选项不符合题意;
C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;
D、∵25<30<36,∴5<<6,故该选项不符合题意;
故选:A.
【点睛】
本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.
3、C
【分析】
根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可.
【详解】
解:A、0.1是0.01的平方根,原说法错误,不符合题意;
B、由,得,原说法错误,不符合题意;
C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;
D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;
故选:C.
【点睛】
本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键.
4、D
【分析】
直接利用算术平方根、平方根、立方根的定义分析得出答案.
【详解】
解:A、0的平方根是0,原说法正确,故此选项不符合题意;
B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;
C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;
D、8的算术平方根是2,原说法不正确,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.
5、C
【分析】
利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.
【详解】
有理数有:,,,,一共四个.
无理数有:,,,1.12112111211112…(每两 个2之间依次多一个1),一共四个.
故选:C.
【点睛】
此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.
6、D
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:是有理数,
是无限循环小数,是有理数,
是分数,是有理数,
,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,
故选:D.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
7、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=2,=2,,
∴无理数只有,共2个.
故选:B.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
8、A
【分析】
,根据被开方数的大小即判断这三个数的大小关系
【详解】
2<<
故选A
【点睛】
本题考查了实数大小比较,掌握无理数的估算是解题的关键.
9、A
【分析】
利用立方根的运算法则,进行判断分析即可.
【详解】
解:A、8的立方根是2,故A正确.
B、3是27的立方根,故B错误.
C、的立方根是,故C错误.
D、(﹣1)2的立方根是1,故D错误.
故选:A.
【点睛】
本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.
10、B
【分析】
根据算术平方根和立方根的计算法则进行求解即可.
【详解】
解:,
故选B.
【点睛】
本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.
二、填空题
1、-2
【分析】
依据定义的运算法则列式计算即可.
【详解】
==-2
故答案为:-2.
【点睛】
本题考查了新定义下的实数运算,理解新定义的运算法则并列式是解题的关键.
2、
【分析】
由分式的值为0的条件可得:,再解方程与不等式即可得到答案.
【详解】
解: 分式的值为零,
由①得:
由②得:且
综上:
故答案为:
【点睛】
本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.
3、2
【分析】
直接根据零指数幂、负整数指数幂、乘方的运算法则计算即可.
【详解】
解:原式.
故答案为:2.
【点睛】
本题考查了实数的加减运算,解题的关键是掌握运算法则,正确的进行计算.
4、4
【分析】
直接利用算术平方根以及偶次方的性质得出x,y的值,进而得出答案.
【详解】
解:∵,
∴x+4=0,y-2=0,
解得:x=-4,y=2,
故xy=(-4)2=16,16的算术平方根是:4.
故答案为:4.
【点睛】
本题主要考查了算术平方根以及偶次方的性质,正确得出x,y的值是解题关键.
5、
【分析】
根据算术平方根的非负性及平方的非负性求出x及y的值,代入计算即可.
【详解】
解:∵,且,
∴x-2=0,y+3=0,
∴x=2,y=-3,
∴,
故答案为:-6.
【点睛】
此题考查了有理数的乘法计算,正确掌握算术平方根的非负性及平方的非负性求出x及y的值是解题的关键.
三、解答题
1、(1)-5,3;(2)t=4;(3)存在,t=,理由见解析.
【分析】
(1)由点B对应的数及线段AB、BC的长,可找出点A、C对应的数;
(2)根据点P、Q的出发点、速度及方向,由追击的等量关系列出含t的方程,解方程即可;
(3)由题意得OP=OQ,据此列一元一次方程,解此方程即可.
【详解】
解:(1)1-6=-5,1+2=3
即点A表示的数为 -5,点C表示的数为3,
故答案为:-5,3;
(2)若点P与点Q能够重合,则AP-CQ=AC,
即3t-t=8
2t=8
t=4
答:当t=4时,点P与点Q能够重合.
(3)存在,理由如下:
若点O为PQ中点,且点P与点Q在原点的异侧,即OP=OQ
5-3t=3+t
4t=2
t=
答:当t=时,点O平分线段PQ且点P与点Q在原点的异侧.
【点睛】
本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键.
2、(1);(2)
【分析】
(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;
(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.
【详解】
(1)原式,
;
(2)原式,
.
【点睛】
此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.
3、2
【分析】
根据算术平方根与立方根的定义即可完成.
【详解】
解:
.
【点睛】
本题是实数的运算,考查了算术平方根的定义、立方根的定义,关键是掌握两个定义,要注意的是负数没有平方根,而任何实数都有立方根.
4、(1);(2)
【分析】
(1)利用完全平方公式,平方差公式展开,合并同类项即可;
(2)根据幂的意义,算术平方根,立方根的定义计算.
【详解】
(1)
=
=;
(2)
=
=.
【点睛】
本题考查了完全平方公式,平方差公式,算术平方根即一个数的正的平方根,立方根如果一个数的立方等于a,则这个数叫做a的立方根;熟练掌握公式,正确理解算术平方根,立方根的定义是解题的关键.
5、
【分析】
根据立方根,算术平方根,绝对值的计算法则求解即可.
【详解】
解:
.
【点睛】
本题主要考查了立方根,算术平方根,绝对值,熟练掌握相关计算法则是解题的关键.
6、(1)9981是“运算数”,2314不是“运算数”;(2)738.5
【分析】
(1)根据“运算数”的定义计算即可;
(2)根据找出,设,其中,且为整数,由,找出的值,代入中即可得解.
【详解】
(1),9是整数,∴9981是“运算数”,
,不是整数,∴2314不是“运算数”;
(2),且为整数,
可为:8932,8943,8954,8965,8976,8987,8998,
是“运算数”,
,,
的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,
设百位上的数字为,个位数上的数字为,则千位上的数字为,十位上的数字为,其中且为整数,
,
,
,即,
当时,,其他情况不满足题意,
,
.
【点睛】
本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.
7、
【分析】
根据立方根,算术平方根,绝对值的计算法则进行求解即可.
【详解】
解:
.
【点睛】
本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.
8、(1);(2)
【分析】
(1)方程整理后,开方即可求出x的值;
(2)方程开立方即可求出x的值.
【详解】
(1)等式两边同时除以2得:,
两边开平方得:;
(2)两边开立方得:,
等式两边同时减去1得:.
【点睛】
本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键.
9、这个长方体的长、宽、高分别为、、
【分析】
根据题意设这个长方体的长、宽、高分别为4x、2x、x,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可.
【详解】
解:设这个长方体的长、宽、高分别为4x、2x、x.
根据题意得:4x•2x=24,
解得:x=或x=﹣(舍去).
则4x=4,2x=2.
所以这个长方体的长、宽、高分别为4cm、2cm、cm.
【点睛】
本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.
10、3
【分析】
首先根据,求出x的值,然后代入x+17求解算术平方根即可.
【详解】
解:∵,
∴5x+32=-8,
解得:x=-8,
∴x+17=-8+17=9,
∵9的算术平方根为3,
∴x+17的算术平方根为 3,
故答案为:3.
【点睛】
此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.
沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习,共1页。试卷主要包含了下列等式正确的是,关于的叙述,错误的是,的算术平方根是,的相反数是,下列判断等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试精练: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试精练,共1页。试卷主要包含了下列各数是无理数的是,100的算术平方根是,实数﹣2的倒数是,下列说法正确的是,下列等式正确的是.等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步达标检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步达标检测题,共1页。试卷主要包含了化简计算﹣的结果是,下列说法,下列整数中,与-1最接近的是,在以下实数,下列说法正确的是等内容,欢迎下载使用。