初中第十二章 实数综合与测试当堂检测题
展开沪教版(上海)七年级数学第二学期第十二章实数达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、9的平方根是( )
A.±3 B.-3 C.3 D.
2、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )
A.4 B.6 C.12 D.36
3、实数在哪两个连续整数之间( )
A.3与4 B.4与5 C.5与6 D.12与13
4、的相反数是( )
A.﹣ B. C. D.3
5、估算的值是在( )之间
A.5和6 B.6和7 C.7和8 D.8和9
6、若,那么( )
A.1 B.-1 C.-3 D.-5
7、下列各数中,3.1415,,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )
A.0个 B.1个 C.2个 D.3个
8、可以表示( )
A.0.2的平方根 B.的算术平方根
C.0.2的负的平方根 D.的立方根
9、如果a、b分别是的整数部分和小数部分,那么的值是( )
A.8 B. C.4 D.
10、的算术平方根是( )
A.2 B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若m、n是两个连续的整数,且,则______.
2、计算:__________.
3、引入新数i,新数i满足分配律、结合律、交换律,已知,则_____.
4、的平方根是__.
5、给定二元数对(p,q),其中或1,或1.三种转换器A,B,C对(p,q)的转换规则如下:
(1)在图1所示的“A—B—C”组合转换器中,若输入,则输出结果为________;
(2)在图2所示的“①—C—②”组合转换器中,若当输入和时,输出结果均为0,则该组合转换器为“____—C—____”(写出一种组合即可).
三、解答题(10小题,每小题5分,共计50分)
1、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为4∶3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.
2、计算:
3、阅读下列材料:
①…
②…
③…
根据你观察到的规律,解决下列问题:
(1)写出①组中的第5个等式;
(2)写出②组的第n个等式,并证明;
(3)计算:.
4、计算:.
5、已知.
(1)求x与y的值;
(2)求x+y的算术平方根.
6、若与互为相反数,且x≠0,y≠0,求的值.
7、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?
8、计算:
(1).
(2)+()2﹣
9、计算:.
10、计算:
-参考答案-
一、单选题
1、A
【分析】
根据平方根的定义进行判断即可.
【详解】
解:∵(±3)2=9
∴9的平方根是±3
故选:A.
【点睛】
本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.
2、D
【分析】
根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.
【详解】
解:∵一个正数a的两个不同平方根是2x-2和6-3x,
∴2x-2+6-3x=0,
解得:x=4,
∴2x-2=2×4-2=8-2=6,
∴正数a=62=36.
故选择D.
【点睛】
本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.
3、B
【分析】
估算即可得到结果.
【详解】
解:,
,
故选:B.
【点睛】
本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.
4、A
【分析】
根据只有符号不同的两个数互为相反数,可得一个数的相反数.
【详解】
解:的相反数是﹣,
故选:A.
【点睛】
此题主要考查相反数,解题的关键是熟知实数的性质.
5、C
【分析】
根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故.
【详解】
∵
∴
∴
故选:C.
【点睛】
本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.
6、D
【分析】
由非负数之和为,可得且,解方程求得,,代入问题得解.
【详解】
解: ,
且,
解得,,
,
故选:D
【点睛】
本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.
7、D
【分析】
理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
3.1415,0.321是有限小数,属于有理数;
是分数,属于有理数;
无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.
故选:D.
【点睛】
此题考查了无理数.解题的关键是掌握实数的分类.
8、C
【分析】
根据平方根和算术平方根的定义解答即可.
【详解】
解:可以表示0.2的负的平方根,
故选:C.
【点睛】
此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.
9、B
【分析】
先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可
【详解】
则
a、b分别是的整数部分和小数部分,则
故选B
【点睛】
本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键.
10、A
【分析】
根据算术平方根的定义即可求出结果.
【详解】
解:=4,4的算术平方根是2.
故选:A.
【点睛】
此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.
二、填空题
1、11
【分析】
根据无理数的估算方法求出、的值,由此即可得.
【详解】
解:∵,
∴,
∵5、6是两个连续的整数,且,
,
,
故答案为:11.
【点睛】
本题考查了无理数的估算和代数式求值,熟练掌握无理数的估算方法是解题关键.
2、3
【分析】
根据实数的运算法则即可求出答案.
【详解】
解:原式.
【点睛】
本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.
3、2
【分析】
先根据平方差公式化简,再把代入计算即可.
【详解】
解:.
故答案为2.
【点睛】
本题考查了新定义运算及平方差公式,熟练掌握平方差公式是解答本题的关键.
4、
【分析】
根据平方的运算,可得,即可求解
【详解】
解:∵,
的平方根是,
故答案为:
【点睛】
本题主要考查了平方和平方根的性质,熟练掌握一个正数有两个平方根,且互为相反数是解题的关键.
5、1 A A
【分析】
(1)利用转换器C的规则即可求出答案.
(2)利用转换器A、B、C的规则,写出一组即可.
【详解】
(1)解:利用转换器C的规则可得:输出结果为1.
(2)解:当输入时,若①对应A,此时经过A、C输出结果为(1,0),②对应A,输出结果恰好为0.
当输入时,若①对应A,此时经过A、C输出结果为(0,1),②对应A,输出结果恰好为0.
故答案为:1;A;A.
【点睛】
本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目.
三、解答题
1、能,桌面长宽分别为28cm和21cm
【分析】
本题可设它的长为4x,则它的宽为3x,根据面积公式列出方程解答即可求出x的值,再代入长宽的表达式,看是否符合条件即可.
【详解】
能做到,理由如下:
设桌面的长和宽分别为4x(cm)和3x(cm),
根据题意得,4x×3x=588.
12x2=588.
(cm)
3x=3×7=21(cm).
∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm,
∴能够裁出一个长方形面积为588cm2并且长宽之比为4∶3的桌面,
答:桌面长宽分别为28cm和21cm.
【点睛】
本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点.
2、
【分析】
根据立方根,算术平方根,绝对值的计算法则求解即可.
【详解】
解:
.
【点睛】
本题主要考查了立方根,算术平方根,绝对值,熟练掌握相关计算法则是解题的关键.
3、
(1);
(2),证明见解析;
(3)
【分析】
(1)根据前几个等式的变化规律即可求解;
(2)根据前几个等式的变化规律即可得出第n个等式,根据异分母分式的减法法则证明即可;
(3)根据前三组观察出的变化规律求解即可.
(1)
解:∵,
∴第5个等式为;
(2)
解:∵,
∴第n个等式为,
证明:右边=,
左边=,
∵右边=左边,
∴;
(3)
解:∵=,=,=,
∴,
∴
=
=
=
=
=.
【点睛】
本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键.
4、1
【分析】
分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.
5、(1),;(2)2
【分析】
(1)根据绝对值和平方根的非负性求出x与y的值;
(2)先计算的值,即可得出的算术平方根.
【详解】
(1)由题可得:,
解得:,
∴,;
(2),
∵4的算术平方根为2,
∴的算术平方根为2.
【点睛】
本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键.
6、
【分析】
根据互为相反数的和为零,可得方程,再根据等式的性质变形.
【详解】
由题意可得:,即,
∴,
∴.
【点睛】
本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.
7、这个长方体的长、宽、高分别为、、
【分析】
根据题意设这个长方体的长、宽、高分别为4x、2x、x,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可.
【详解】
解:设这个长方体的长、宽、高分别为4x、2x、x.
根据题意得:4x•2x=24,
解得:x=或x=﹣(舍去).
则4x=4,2x=2.
所以这个长方体的长、宽、高分别为4cm、2cm、cm.
【点睛】
本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.
8、(1);(2)
【分析】
(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;
(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.
【详解】
(1)原式,
;
(2)原式,
.
【点睛】
此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.
9、1
【分析】
根据平方根与立方根可直接进行求解.
【详解】
解:原式.
【点睛】
本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.
10、
【分析】
分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.
【详解】
解:原式
【点睛】
本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.
沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习,共1页。试卷主要包含了下列等式正确的是,关于的叙述,错误的是,的算术平方根是,的相反数是,下列判断等内容,欢迎下载使用。
数学七年级下册第十二章 实数综合与测试随堂练习题: 这是一份数学七年级下册第十二章 实数综合与测试随堂练习题,共1页。试卷主要包含了下列说法正确的是,下列各数是无理数的是,下列说法,若,则的值为,64的立方根为.等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题,共1页。试卷主要包含了3的算术平方根为,下列各式正确的是.,的算术平方根是,已知a=,b=-|-|,c=,64的立方根为.等内容,欢迎下载使用。