搜索
    上传资料 赚现金
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数定向训练练习题(无超纲)
    立即下载
    加入资料篮
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数定向训练练习题(无超纲)01
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数定向训练练习题(无超纲)02
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数定向训练练习题(无超纲)03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试练习

    展开
    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共1页。试卷主要包含了三个实数,2,之间的大小关系,4的平方根是,关于的叙述,错误的是,估算的值是在之间等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数定向训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、3的算术平方根为(   

    A. B.9 C.±9 D.±

    2、的值等于(   

    A. B.-2 C. D.2

    3、下列说法中正确的有(  )

    ①±2都是8的立方根

    x

    的平方根是3  

    ④﹣=2.

    A.1个 B.2个 C.3个 D.4个

    4、三个实数,2,之间的大小关系(  )

    A.>2 B.>2> C.2> D.<2<

    5、4的平方根是(  )

    A.±2 B.﹣2 C.2 D.4

    6、点A在数轴上的位置如图所示,则点A表示的数可能是(   

    A. B. C. D.

    7、关于的叙述,错误的是(  )

    A.是无理数

    B.面积为8的正方形边长是

    C.的立方根是2

    D.在数轴上可以找到表示的点

    8、在, 0, , 0.010010001……, , -0.333…,   3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有(     

    A.2个 B.3个 C.4个 D.5个

    9、估算的值是在(    )之间

    A.5和6 B.6和7 C.7和8 D.8和9

    10、下列语句正确的是(  )

    A.8的立方根是2 B.﹣3是27的立方根

    C.的立方根是± D.(﹣1)2的立方根是﹣1

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、若的平方根是±4,则a=___.

    2、若实数满足,则=_____________.

    3、对于实数ab,定义运算“*”如下:a*b=(a+b2﹣(ab2.若(m+2)*(m﹣3)=24,则m的值为______.

    4、如果,那么=_____.

    5、计算: = ______.

    三、解答题(10小题,每小题5分,共计50分)

    1、计算:

    2、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为abab).定义:若数mb3a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3a3=(ba)(b2+ab+a2).)

    (1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;

    (2)已知两个“复合数”的差是42,求这两个“复合数”.

    3、计算:

    (1)

    (2)+(2

    4、计算:+++

    5、已知ab互为相反数,cd互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.

    6、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)

    7、已知:,求x+17的算术平方根.

    8、计算:

    9、计算:

    (1)18+(﹣17)+7+(﹣8);

    (2)×(﹣12);

    (3)﹣22+|﹣1|+

    10、(1)计算:

    (2)分解因式:

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    利用算术平方根的定义求解即可.

    【详解】

    3的算术平方根是

    故选:A.

    【点睛】

    本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.

    2、D

    【分析】

    由于表示4的算术平方根,由此即可得到结果.

    【详解】

    解:∵4的算术平方根为2,

    的值为2.

    故选D.

    【点睛】

    此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.

    3、B

    【分析】

    根据平方根和立方根的定义进行判断即可.

    【详解】

    解:①2是8的立方根,-2不是8的立方根,原说法错误;

    =x,正确;

    ,9的平方根是3,原说法错误;

    ④﹣=2,正确;

    综上,正确的有②④共2个,

    故选:B.

    【点睛】

    本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.

    4、A

    【分析】

    ,根据被开方数的大小即判断这三个数的大小关系

    【详解】

    2<

    故选A

    【点睛】

    本题考查了实数大小比较,掌握无理数的估算是解题的关键.

    5、A

    【分析】

    根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根.

    【详解】

    解:∵

    ∴4的平方根是

    故选:A.

    【点睛】

    本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.

    6、A

    【分析】

    根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.

    【详解】

    解:观察得到点A表示的数在4至4.5之间,

    A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;

    B、∵9<10<16,∴3<<4,故该选项不符合题意;

    C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;

    D、∵25<30<36,∴5<<6,故该选项不符合题意;

    故选:A.

    【点睛】

    本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.

    7、C

    【分析】

    根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.

    【详解】

    解:A是无理数,该说法正确,故本选项不符合题意;

    B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;

    C、8的立方根是2,该说法错误,故本选项符合题意;

    D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;

    故选:C

    【点睛】

    本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.

    8、C

    【分析】

    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

    【详解】

    解:=1,=2,,3,

    ∴无理数有,2.010101…(相邻两个1之间有1个0)共4个.

    故选:C.

    【点睛】

    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

    9、C

    【分析】

    根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故

    【详解】

    故选:C.

    【点睛】

    本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.

    10、A

    【分析】

    利用立方根的运算法则,进行判断分析即可.

    【详解】

    解:A、8的立方根是2,故A正确.

    B、3是27的立方根,故B错误.

    C、的立方根是,故C错误.

    D、(﹣1)2的立方根是1,故D错误.

    故选:A.

    【点睛】

    本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.

    二、填空题

    1、256

    【分析】

    根据平方根与算术平方根的定义即可求解.

    【详解】

    解:∵的平方根是±4,

    故答案为:256.

    【点睛】

    此题主要考查实数的性质,解题的关键是熟知平方根与算术平方根的定义:如果,那么就叫做b的平方根,如果对于两个正数有,则ab的算术平方根.

    2、1

    【分析】

    根据绝对值与二次根式的非负性求出ab的值,故可求解.

    【详解】

    解:∵

    a-2=0,b-4=0

    a=2,b=4

    =

    故答案为:1.

    【点睛】

    此题主要考查代数式求值,解题的关键是熟知非负性的运用.

    3、或4

    【分析】

    先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得.

    【详解】

    解:由题意得:,即

    解得

    故答案为:或4.

    【点睛】

    本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.

    4、

    【分析】

    本题可利用立方根的定义直接求解.

    【详解】

    故填:

    【点睛】

    本题考查立方根的定义:如果一个数的立方等于a,则这个数称为a的立方根使用时和平方根定义对比记忆.

    5、##

    【分析】

    根据求一个数的立方根,化简绝对值,求一个数的算术平方根,进行实数的混合运算

    【详解】

    解:

    故答案为:

    【点睛】

    本题考查了一个数的立方根,化简绝对值,求一个数的算术平方根,掌握以上知识是解题的关键.

    三、解答题

    1、2

    【分析】

    根据算术平方根与立方根的定义即可完成.

    【详解】

    解:

    【点睛】

    本题是实数的运算,考查了算术平方根的定义、立方根的定义,关键是掌握两个定义,要注意的是负数没有平方根,而任何实数都有立方根.

    2、(1)12不是复合数;证明见解析;(2)98和56.

    【分析】

    (1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;

    (2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.

    【详解】

    (1)12不是复合数,

    ∵找不到两个整数ab,使a3b3=12,

    故12不是复合数,

    设“正点”P所表示的数为xx为正整数),

    ax﹣1,bx+1,

    ∴(x+1)3﹣(x﹣1)3

    =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)

    =2(3x2+1)

    =6x2+2,

    ∴6x2+2﹣2=6x2一定能被6整除;

    (2)设两个复合数为6m2+2和6n2+2(mn都是正整数),

    ∵两个“复合数”的差是42,

    ∴(6m2+2)﹣(6n2+2)=42,

    m2n2=7,

    mn都是正整数,

    ∴6m2+2=98,6n2+2=56,

    这两个“复合数”为98和56.

    【点睛】

    本题考查关于实数的新定义题型,理解新定义是解题的关键.

    3、(1);(2)

    【分析】

    (1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;

    (2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.

    【详解】

    (1)原式

    (2)原式

    【点睛】

    此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.

    4、

    【分析】

    先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.

    【详解】

    解:原式

    【点睛】

    本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.

    5、-1

    【分析】

    由题意可知,将值代入即可.

    【详解】

    解:由题意得:

    解得

    【点睛】

    本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.

    6、第二种,理由见解析

    【分析】

    根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.

    【详解】

    解:第一种方法:1×10×365=3650元

    第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元

    ∵10485.75>3650

    ∴第二种方法得到的钱多.

    【点睛】

    本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.

    7、3

    【分析】

    首先根据,求出x的值,然后代入x+17求解算术平方根即可.

    【详解】

    解:∵

    ∴5x+32=-8,

    解得:x=-8,

    x+17=-8+17=9,

    ∵9的算术平方根为3,

    x+17的算术平方根为 3,

    故答案为:3.

    【点睛】

    此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念.

    8、1

    【分析】

    根据平方根与立方根可直接进行求解.

    【详解】

    解:原式

    【点睛】

    本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.

    9、(1)0;(2)1;(3)

    【分析】

    (1)根据有理数的加法计算法则求解即可;

    (2)根据有理数的乘法分配律求解即可;

    (3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可.

    【详解】

    解:(1)

    (2)

    (3)

    【点睛】

    本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键.

    10、(1);(2)

    【分析】

    (1)先计算乘方运算,求解算术平方根,化简绝对值,再合并即可;

    (2)提取公因式即可.

    【详解】

    解:(1)解:原式

    (2)解:原式

    【点睛】

    本题考查的是立方根的含义,绝对值的化简,实数的运算,提公因式法分解因式,掌握“实数的运算及提公因式分解因式”是解本题的关键.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共21页。试卷主要包含了下列四个数中,最小的数是,的值等于,已知a=,b=-|-|,c=,实数在哪两个连续整数之间,下列说法等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共21页。试卷主要包含了下列实数比较大小正确的是,下列等式正确的是,若 ,则,有一个数值转换器,原理如下等内容,欢迎下载使用。

    初中数学第十二章 实数综合与测试当堂达标检测题: 这是一份初中数学第十二章 实数综合与测试当堂达标检测题,共20页。试卷主要包含了4的平方根是,下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map