搜索
    上传资料 赚现金
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数重点解析练习题(无超纲)
    立即下载
    加入资料篮
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数重点解析练习题(无超纲)01
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数重点解析练习题(无超纲)02
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数重点解析练习题(无超纲)03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题,共1页。试卷主要包含了实数在哪两个连续整数之间,下列语句正确的是,若 ,则,下列实数比较大小正确的是,下列说法正确的是,下列计算正确的是.等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数重点解析

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、若,则整数a的值不可能为(   

    A.2 B.3 C.4 D.5

    2、下列各数是无理数的是(   

    A. B.3.33 C. D.

    3、3的算术平方根为(   

    A. B.9 C.±9 D.±

    4、实数在哪两个连续整数之间(   

    A.3与4 B.4与5 C.5与6 D.12与13

    5、下列语句正确的是(  )

    A.8的立方根是2 B.﹣3是27的立方根

    C.的立方根是± D.(﹣1)2的立方根是﹣1

    6、若 ,则   

    A. B. C. D.

    7、下列实数比较大小正确的是(  

    A. B. C. D.

    8、下列说法正确的是(   )

    A.的平方根 B.的算术平方根 C.2是-4的算术平方根 D.的平方根是它本身

    9、下列计算正确的是(    ).

    A. B. C. D.

    10、若,那么   

    A.1 B.-1 C.-3 D.-5

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、对于实数ab,定义运算“*”如下:a*b=(a+b2﹣(ab2.若(m+2)*(m﹣3)=24,则m的值为______.

    2、的平方根是________.

    3、已知432=1849,442=1936,452=2025,462=2116,若n为整数且nn+1,则n的值是________.

    4、计算:__________.

    5、计算______.

    三、解答题(10小题,每小题5分,共计50分)

    1、计算:

    2、已知是正数的两个平方根,且,求值,及的值.

    3、如图是一个无理数筛选器的工作流程图.

    (1)当x为16时,y值为______;

    (2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;

    (3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?

    (4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.

    4、(1)计算

    (2)计算

    (3)解方程

    (4)解方程组

    5、计算题:

    (1)

    (2)

    6、计算:

    7、观察下列等式:

    第1个等式:12=13

    第2个等式:(1+2)2=13+23

    第3个等式:(1+2+3)2=13+23+33

    第4个等式:(1+2+3+4)2=13+23+33+43

    ……

    按照以上规律,解决下列问题:

    (1)写出第5个等式:__________________;

    (2)写出第nn为正整数)个等式:__________________(用含n的等式表示);

    (3)利用上述规律求值:

    8、求下列各式中x的值.

    (1)x-3)3=4

    (2)9(x+2)2=16

    9、求下列各数的立方根:

    (1)729

    (2)

    (3)

    (4)

    10、求下列各式中的值:

    (1)                        (2)

     

    -参考答案-

    一、单选题

    1、D

    【分析】

    首先确定的范围,然后求出整式a可能的值,判断求解即可.

    【详解】

    解:∵,即,即

    又∵

    ∴整数a可能的值为:2,3,4,

    ∴整数a的值不可能为5,

    故选:D.

    【点睛】

    此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.

    2、C

    【分析】

    无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.

    【详解】

    解:,是有理数,3.33和是有理数,是无理数,

    故选:C.

    【点睛】

    本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.

    3、A

    【分析】

    利用算术平方根的定义求解即可.

    【详解】

    3的算术平方根是

    故选:A.

    【点睛】

    本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.

    4、B

    【分析】

    估算即可得到结果.

    【详解】

    解:

    故选:B.

    【点睛】

    本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.

    5、A

    【分析】

    利用立方根的运算法则,进行判断分析即可.

    【详解】

    解:A、8的立方根是2,故A正确.

    B、3是27的立方根,故B错误.

    C、的立方根是,故C错误.

    D、(﹣1)2的立方根是1,故D错误.

    故选:A.

    【点睛】

    本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.

    6、B

    【分析】

    先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.

    【详解】

    解:

    (舍去),

    故选:B.

    【点睛】

    本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.

    7、D

    【分析】

    根据有理数比较大小的法则对各选项进行比较即可.

    【详解】

    解:A、1>-4,故本选项错误;

    B、-1000<-0.001,故本选项错误;

    C,故本选项错误;

    D,故本选项正确;

    故选:D.

    【点睛】

    本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数; 两个负数,绝对值大的其值反而小.

    8、A

    【分析】

    根据平方根的定义及算术平方根的定义解答.

    【详解】

    解:A的平方根,故该项符合题意;

    B、4是的算术平方根,故该项不符合题意;

    C、2是4的算术平方根,故该项不符合题意;

    D、1的平方根是,故该项不符合题意;

    故选:A

    【点睛】

    此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键.

    9、D

    【分析】

    由负数没有算术平方根可判断A,由算术平方根不可能是负数可判断B,C,由立方根的含义可判断D,从而可得答案.

    【详解】

    解:没有意义,故A不符合题意;

    ,故B不符合题意;

    ,故C不符合题意;

    ,运算正确,故D符合题意;

    故选D

    【点睛】

    本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.

    10、D

    【分析】

    由非负数之和为,可得,解方程求得,代入问题得解.

    【详解】

    解:

    解得,

    故选:D

    【点睛】

    本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.

    二、填空题

    1、或4

    【分析】

    先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得.

    【详解】

    解:由题意得:,即

    解得

    故答案为:或4.

    【点睛】

    本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.

    2、±

    【分析】

    直接根据平方根的定义求解即可.

    【详解】

    解:的平方根为±

    故答案为:±

    【点睛】

    本题主要考查了平方根,知道一个正数有两个平方根是解决本题的关键.

    3、44

    【分析】

    由题意可直接进行求解.

    【详解】

    解:∵442=1936,452=2025,

    故答案为44.

    【点睛】

    本题主要考查无理数的估算,熟练掌握无理数的估算是解题的关键.

    4、2

    【分析】

    直接利用立方根、绝对值化简得出答案.

    【详解】

    解:原式

    故答案为:2.

    【点睛】

    本题主要考查了实数的运算,解题的关键是正确化简.

    5、##

    【分析】

    根据立方根和算术平方根的求解方法求解即可.

    【详解】

    解:

    故答案为:

    【点睛】

    本题主要考查了算术平方根和立方根,熟知二者的定义是解题的关键.

    三、解答题

    1、

    【分析】

    根据有理数的乘方运算,有理数的乘方运算,化简绝对值,最后进行实数的混合运算即可

    【详解】

    解:原式

    【点睛】

    本题考查了实数的混合运算,正确的计算是解题的关键.

    2、

    【分析】

    根据正数的平方根有2个,且互为相反数,以及求出的值即可.

    【详解】

    解:因为是正数的两个平方根,可得:

    代入,解得:

    所以

    所以

    【点睛】

    此题考查了平方根,明确一个正数的两个平方根互为相反数,和为0是解题的关键.

    3、

    (1)

    (2)0,1

    (3)x<0

    (4)x=3或x=9或x=81.

    【分析】

    (1)根据运算规则即可求解;

    (2)根据0的算术平方根是0,即可判断;

    (3)根据二次根式有意义的条件,被开方数是非负数即可求解;

    (4)根据运算法则,进行逆运算即可求得无数个满足条件的数.

    (1)

    解:当x=16时,,则y=

    故答案是:

    (2)

    解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;

    (3)

    解:当x<0时,导致开平方运算无法进行;

    (4)

    解: x的值不唯一.x=3或x=9或x=81.

    【点睛】

    本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.

    4、(1);(2);(3);(4)

    【分析】

    (1)先计算算术平方根与立方根,再计算加减法即可得;

    (2)先化简绝对值,再计算实数的加减法即可得;

    (3)利用平方根解方程即可得;

    (4)利用加减消元法解二元一次方程组即可得.

    【详解】

    解:(1)原式

    (2)原式

    (3)

    (4)

    由②①得:

    解得

    代入①得:

    解得

    故方程组的解为

    【点睛】

    本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.

    5、

    (1)

    (2)

    【分析】

    (1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;

    (2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.

    (1)

    解:原式=

    (2)

    解:原式=

    【点睛】

    本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.

    6、

    【分析】

    分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.

    【详解】

    解:原式

    【点睛】

    本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.

    7、

    (1)(1+2+3+4+5)2=13+23+33+43+53

    (2)(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3

    (3)265

    【分析】

    (1)根据前几个等式的变化规律解答即可;

    (2)根据前几个等式的变化规律写出第n个等式即可;

    (3)根据变化规律和平方差公式进行计算即可.

    (1)

    解:根据题意,第5个等式为(1+2+3+4+5)2=13+23+33+43+53

    故答案为:(1+2+3+4+5)2=13+23+33+43+53

    (2)

    解:根据题意,第n个等式为(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3

    故答案为:(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3

    (3)

    解:由(2)中(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3知,

    (1+2+3+4+5+…+20)2=13+23+33+43+53+…+203①,

    (1+2+3+4+5+…+10)2=13+23+33+43+53+…+103②,

    ①-②得:

    (1+2+3+4+5+…+20+1+2+3+4+5+…+10)×(11+12+13+…+20)=113+123+133+…+203

    =(1+2+3+4+5+…+20+1+2+3+4+5+…+10)

    =265.

    【点睛】

    本题考查数字类规律探究、平方差公式、与实数运算相关的规律题,理解题意,正确得出等式的变化规律并能灵活运用是解答的关键.

    8、(1)x=5;(2)x=-x=

    【分析】

    (1)把x-3可做一个整体求出其立方根,进而求出x的值;

    (2)把x+2可做一个整体求出其平方根,进而求出x的值.

    【详解】

    解:(1) (x−3)3=4,

    x-3)3=8,

    x-3=2,

    x=5;

    (2)9(x+2)2=16,

    x+2)2=

    x+2=

    x=-x=

    【点睛】

    本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.

    9、(1)9;(2);(3);(4)-5

    【分析】

    根据立方根的定义,找到一个数,使其立方等于已知的数,从而可得答案.

    【详解】

    解:(1)因为93=729,

    所以729的立方根是9,即

    (2),因为

    所以的立方根是,即

    (3)因为

    所以的立方根是,即

    (4).

    【点睛】

    本题考查的是求解一个数的立方根,掌握“利用立方根的含义求解一个数的立方根”是解本题的关键.

    10、(1);(2)

    【分析】

    (1)把原方程化为,再利用立方根的含义解方程即可;

    (2)直接利用平方根的含义把原方程化为,再解两个一次方程即可.

    【详解】

    解:(1)

    解得:

    (2)

    解得:

    【点睛】

    本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共1页。试卷主要包含了a为有理数,定义运算符号▽,下列实数比较大小正确的是,有一个数值转换器,原理如下,下列计算正确的是.等内容,欢迎下载使用。

    初中数学第十二章 实数综合与测试课堂检测: 这是一份初中数学第十二章 实数综合与测试课堂检测,共1页。试卷主要包含了在0.1010010001…,观察下列算式,在实数中,无理数的个数是,若关于x的方程,下列四个数中,最小的数是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共1页。试卷主要包含了如果a,下列说法正确的是,估计的值应该在.,下列各数中,比小的数是,4的平方根是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map