![2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数达标测试练习题(无超纲)01](http://img-preview.51jiaoxi.com/2/3/12706042/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数达标测试练习题(无超纲)02](http://img-preview.51jiaoxi.com/2/3/12706042/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数达标测试练习题(无超纲)03](http://img-preview.51jiaoxi.com/2/3/12706042/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业
展开沪教版(上海)七年级数学第二学期第十二章实数达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列四个数中,最小的数是( )
A.﹣3 B.﹣ C.0 D.﹣π
2、实数﹣2的倒数是( )
A.2 B.﹣2 C. D.﹣
3、在,, 0, , , 0.010010001……, , -0.333…, , 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )
A.2个 B.3个 C.4个 D.5个
4、已知2m﹣1和5﹣m是a的平方根,a是( )
A.9 B.81 C.9或81 D.2
5、三个实数,2,之间的大小关系( )
A.>>2 B.>2> C.2>> D.<2<
6、一个正数的两个平方根分别是2a与,则a的值为( )
A.1 B.﹣1 C.2 D.﹣2
7、﹣π,﹣3,,的大小顺序是( )
A. B.
C. D.
8、下列各式中,化简结果正确的是( )
A. B. C. D.
9、下列各式正确的是( ).
A. B.
C. D.
10、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).
A.2个 B.3个 C.4个 D.5个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、观察下列关于正整数的等式:
7*5*2=351410…①
8*6*3=482418…②
5*4*2=201008…③
根据你发现的规律,请计算3*4*5=_____.
2、若一个正数的两个平方根分别为,则_____ ,这个正数是_________.
3、的平方根是__________.
4、若=2,则x=___.
5、若的平方根是±4,则a=___.
三、解答题(10小题,每小题5分,共计50分)
1、运算,满足
(1)求的值;
(2)求的值.
2、计算:.
3、已知一个正数x的平方根是a+3和2a-15,求a和x的值
4、计算:
(1).
(2)+()2﹣
5、计算:
6、求下列各式中的x:
(1);
(2).
7、已知正数a的两个不同平方根分别是2x﹣2和6﹣3x,a﹣4b的算术平方根是4.
(1)求这个正数a以及b的值;
(2)求b2+3a﹣8的立方根.
8、计算:.
9、求下列各式中的值:
(1); (2).
10、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.
(1)用xcm表示图中空白部分的面积;
(2)当x=5cm时空白部分面积为多少?
(3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?
-参考答案-
一、单选题
1、D
【分析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.
【详解】
解:∵,,,,
∴,
∴最小的数是,
故选D.
【点睛】
此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
2、D
【分析】
根据倒数的定义即可求解.
【详解】
解:-2的倒数是﹣.
故选:D
【点睛】
本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.
3、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=1,=2,,3,
∴无理数有,,,2.010101…(相邻两个1之间有1个0)共4个.
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
4、C
【分析】
分两种情况讨论求解:当2m﹣1与5﹣m是a的两个不同的平方根和当2m﹣1与5﹣m是a的同一个平方根.
【详解】
解:若2m﹣1与5﹣m互为相反数,
则2m﹣1+5﹣m=0,
∴m=﹣4,
∴5﹣m=5﹣(﹣4)=9,
∴a=92=81,
若2m﹣1=5﹣m,
∴m=2,
∴5﹣m=5﹣2=3,
∴a=32=9,
故选C.
【点睛】
本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.
5、A
【分析】
,根据被开方数的大小即判断这三个数的大小关系
【详解】
2<<
故选A
【点睛】
本题考查了实数大小比较,掌握无理数的估算是解题的关键.
6、D
【分析】
根据正数有两个平方根,且互为相反数,即可求解.
【详解】
解:根据题意得: ,
解得: .
故选:D
【点睛】
本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.
7、B
【分析】
根据实数的大小比较法则即可得.
【详解】
解:,
,
,
则,
故选:B.
【点睛】
本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.
8、D
【分析】
根据实数的运算法则依次对选项化简再判断即可.
【详解】
A、,化简结果错误,与题意不符,故错误.
B、,化简结果错误,与题意不符,故错误.
C、,化简结果错误,与题意不符,故错误.
D、,化简结果正确,与题意相符,故正确.
故选:D .
【点睛】
本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则.
9、D
【分析】
一个整数有两个平方根,这两个平方根互为相反数;如果一个数的立方等于,那么这个数叫做的立方根;据此可得结论.
【详解】
解:A、,原式错误,不符合题意;
B、,原式错误,不符合题意;
C、,原式错误,不符合题意;
D、,原式正确,符合题意;
故选:D.
【点睛】
本题考查了立方根,平方根,算数平方根,熟练掌握相关概念是解本题的关键.
10、D
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:是有理数,
是无限循环小数,是有理数,
是分数,是有理数,
,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,
故选:D.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
二、填空题
1、121520
【分析】
观察规律可知,算出3*4*5即可.
【详解】
①,
②,
③,
.
故答案为:121520.
【点睛】
本题考查数字类找规律问题,根据题目给出的信息找出规律是解题的关键.
2、
【分析】
根据平方根的性质,可得 ,从而得到 ,即可求解.
【详解】
解:∵一个正数的两个平方根分别为,
∴ ,
解得: ,
∴这个正数为 .
故答案为: ;
【点睛】
本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数是解题的关键.
3、
【分析】
先求出,再根据平方根性质,即可求解.
【详解】
解:∵,
∴的平方根是 .
故答案为:
【点睛】
本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.
4、8
【分析】
根据立方根的性值计算即可;
【详解】
∵=2,
∴;
故答案是8.
【点睛】
本题主要考查了立方根的性质,准确分析计算是解题的关键.
5、256
【分析】
根据平方根与算术平方根的定义即可求解.
【详解】
解:∵的平方根是±4,
∴,
∴,
故答案为:256.
【点睛】
此题主要考查实数的性质,解题的关键是熟知平方根与算术平方根的定义:如果,那么就叫做b的平方根,如果对于两个正数有,则a是b的算术平方根.
三、解答题
1、
(1)-10
(2)-22
【解析】
(1)
解:
(2)
解:
【点睛】
本题考查了有理数的混合运算,利用新运算代入求值即可,关键在于理解新运算,代入时候看清楚符号是否正确.
2、2
【分析】
根据算术平方根与立方根的定义即可完成.
【详解】
解:
.
【点睛】
本题是实数的运算,考查了算术平方根的定义、立方根的定义,关键是掌握两个定义,要注意的是负数没有平方根,而任何实数都有立方根.
3、4,49
【分析】
根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.
【详解】
解:∵正数有2个平方根,它们互为相反数,
∴,
解得,
所以.
【点睛】
本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.
4、(1);(2)
【分析】
(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;
(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.
【详解】
(1)原式,
;
(2)原式,
.
【点睛】
此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.
5、
【分析】
利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.
【详解】
解:原式=
【点睛】
此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.
6、(1);(2)
【分析】
(1)根据等式的性质和平方根的意义进行计算即可;
(2)根据等式的性质和立方根的意义进行计算即可.
【详解】
解:(1),
两边都除以4得,,
所以,;
(2),
两边都减1得,,
所以,,
解得,.
【点睛】
本题考查等式的性质、立方根、平方根的意义,解题的关键是掌握等式的性质、平方根、立方根的意义是正确解答的关键.
7、(1),;(2)b2+3a﹣8的立方根是5
【分析】
(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;
(2)将(1)中所求a、b的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.
【详解】
解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x,
∴2x﹣2+6﹣3x=0,
∴x=4,
∴2x﹣2=6,
∴a=36,
∵a﹣4b的算术平方根是4,
∴a﹣4b=16,
∴36-4b=16
∴b=5;
(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,
∴b2+3a﹣8的立方根是5.
【点睛】
本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.
8、
【分析】
根据求一个数的算术平方根,负整数指数幂,0次幂进行计算即可
【详解】
原式=
=.
【点睛】
本题考查了求一个数的算术平方根,负整数指数幂,0次幂,正确的计算是解题的关键.
9、(1);(2)
【分析】
(1)把原方程化为,再利用立方根的含义解方程即可;
(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.
【详解】
解:(1)
解得:
(2)
或
解得:
【点睛】
本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.
10、(1);(2);(3)13cm
【分析】
(1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;
(2)将x=5代入计算可得;
(3)根据题意列出方程求解即可.
【详解】
解:(1)空白部分面积为;
(2)当x=5时,空白部分面积为.
(3)根据题意得,,
解得x=13或-13(舍去),
所以,大正方形的边长为13cm
【点睛】
此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共1页。试卷主要包含了a为有理数,定义运算符号▽,下列实数比较大小正确的是,有一个数值转换器,原理如下,下列计算正确的是.等内容,欢迎下载使用。
初中数学第十二章 实数综合与测试课堂检测: 这是一份初中数学第十二章 实数综合与测试课堂检测,共1页。试卷主要包含了在0.1010010001…,观察下列算式,在实数中,无理数的个数是,若关于x的方程,下列四个数中,最小的数是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共1页。试卷主要包含了如果a,下列说法正确的是,估计的值应该在.,下列各数中,比小的数是,4的平方根是等内容,欢迎下载使用。