初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题
展开沪教版(上海)七年级数学第二学期第十二章实数专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、规定一种新运算:,如.则的值是( ).
A. B. C.6 D.8
2、下列各式正确的是( ).
A. B.
C. D.
3、三个实数,2,之间的大小关系( )
A.>>2 B.>2> C.2>> D.<2<
4、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为( )
A. B.7 C. D.1
5、以下正方形的边长是无理数的是( )
A.面积为9的正方形 B.面积为49的正方形
C.面积为8的正方形 D.面积为25的正方形
6、一个正方体的体积是5m3,则这个正方体的棱长是( )
A.m B.m C.25m D.125m
7、估计的值应该在( ).
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
8、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).
A.2个 B.3个 C.4个 D.5个
9、3的算术平方根是( )
A.±3 B. C.-3 D.3
10、100的算术平方根是( )
A.10 B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、计算____________;
2、 “平方根节”是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如:2009年的3月3日,2016年的4月4日.请写出你喜欢的一个“平方根节”(题中所举的例子除外)______年_____月_______日.
3、若,则x+1的平方根是 _____.
4、如果,那么=_____.
5、下列各数:-1、、、,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是______.
三、解答题(10小题,每小题5分,共计50分)
1、计算:.
2、已知.
(1)求x与y的值;
(2)求x+y的算术平方根.
3、(1)计算:;
(2)计算:(﹣2x2)2+x3•x﹣x5÷x;
(3)先化简再求值:2(a+2)2﹣4(a+3)(a﹣3)+3(a﹣1)2,其中a=﹣1.
4、解方程,求x的值.
(1)
(2)
5、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b﹣9)2=0,c=1.
(1)a= ,b= ;
(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|x﹣a|﹣|x﹣b|取得最大值,最大值为 ;
(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t≤8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?
6、已知的立方根是2,算术平方根是4,求的算术平方根.
7、求下列各式中的x:
(1);
(2).
8、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)
9、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为.
参考小燕同学的做法,解答下列问题:
(1)写出的小数部分为________;
(2)已知与的小数部分分别为a和b,求a2+2ab+b2的值;
(3)如果,其中x是整数,0<y<1,那么=________
(4)设无理数(m为正整数)的整数部分为n,那么的小数部分为________(用含m,n的式子表示).
10、阅读下面材料,并按要求完成相应问题:
定义:如果一个数的平方等于-1,记为,这个数叫做虚数单位,把形如的数叫做复数,其中是这个复数的实部,是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.
例如:
应用:
(1)计算
(2)如果正整数a、b满足,求a、b的值.
(3)将化为(均为实数)的形式,(即化为分母中不含的形式).
-参考答案-
一、单选题
1、C
【分析】
根据新定义计算法则把转化为常规下运算得出,然后按有理数运算法则计算即可.
【详解】
解:∵,
∴.
故选择C.
【点睛】
本题考查新定义运算,掌握新定义运算的要点,含乘方的有理数混合运算是解题关键.
2、D
【分析】
一个整数有两个平方根,这两个平方根互为相反数;如果一个数的立方等于,那么这个数叫做的立方根;据此可得结论.
【详解】
解:A、,原式错误,不符合题意;
B、,原式错误,不符合题意;
C、,原式错误,不符合题意;
D、,原式正确,符合题意;
故选:D.
【点睛】
本题考查了立方根,平方根,算数平方根,熟练掌握相关概念是解本题的关键.
3、A
【分析】
,根据被开方数的大小即判断这三个数的大小关系
【详解】
2<<
故选A
【点睛】
本题考查了实数大小比较,掌握无理数的估算是解题的关键.
4、A
【分析】
定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.
【详解】
解:且当时,▽a=a,
▽(-3)=-3,
4+▽(2-5)=4-3=1>-2,
当a>-2时,▽a=-a,
▽[4+▽(2-5)]=▽1=-1,
故选:A.
【点睛】
此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
5、C
【分析】
理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.
【详解】
解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;
B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;
C、面积为8的正方形的边长为,是无理数,故本选项符合题意;
D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.
故选:C.
【点睛】
本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.
6、B
【分析】
根据正方体的体积公式:V=a3,把数据代入公式解答.
【详解】
解:××=5(立方米),
答:这个正方体的棱长是米,
故选:B.
【点睛】
此题主要考查正方体体积公式的灵活运用,关键是熟记公式.
7、C
【分析】
根据25<29<36估算出的大小,然后可求得的范围.
【详解】
解:∵25<29<36,
∴<<,即5<<6.
8、D
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:是有理数,
是无限循环小数,是有理数,
是分数,是有理数,
,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,
故选:D.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
9、B
【分析】
根据算术平方根的定义求解即可,平方根:如果一个数的平方等于,那么这个数就叫的平方根,其中属于非负数的平方根称之为算术平方根.
【详解】
解:3的算术平方根是
故选B
【点睛】
本题考查了算术平方根的定义,掌握定义是解题的关键.
10、A
【分析】
根据算术平方根的概念:一个正数x的平方等于a,即,那么这个正数x就叫做a的算术平方根,即可解答.
【详解】
解:∵,,(舍去)
∴100的算术平方根是10,
故选A.
【点睛】
本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念.
二、填空题
1、-3
【分析】
根据立方根、算术平方根可直接进行求解.
【详解】
解:原式=;
故答案为-3.
【点睛】
本题主要考查立方根、算术平方根,熟练掌握求一个数的立方根及算术平方根是解题的关键.
2、2025 5 5
【分析】
首先确定月份和日子,最后确定年份即可.(答案不唯一).
【详解】
解:2025年5月5日.(答案不唯一).
故答案是:2025,5,5.
【点睛】
本题考查了平方根的应用,解题的关键是正确理解三个数字的关系.
3、
【分析】
根据平方根的定义求得的值,进而根据平方根的意义即可求得答案,平方根:如果一个数的平方等于,那么这个数就叫的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于,那么这个数叫做的立方根.
【详解】
解:∵
∴
,的平方根是
故答案为:
【点睛】
本题主要考查了平方根和立方根的定义,解决本题的关键是要熟练根据平方根的意义和平方根的定义进行求解.
4、
【分析】
本题可利用立方根的定义直接求解.
【详解】
∵,
∴.
故填:.
【点睛】
本题考查立方根的定义:如果一个数的立方等于a,则这个数称为a的立方根使用时和平方根定义对比记忆.
5、3
【分析】
无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定.
【详解】
在-1、、、,0.1010010001…(相邻两个1之间0的个数增加1)中,
无理数有,,0.1010010001…(相邻两个1之间0的个数增加1)共3个.
故答案为:3.
【点睛】
本题考查了实数的分类,理解有理数与无理数的概念是解题的关键.
三、解答题
1、1
【分析】
根据平方根与立方根可直接进行求解.
【详解】
解:原式.
【点睛】
本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.
2、(1),;(2)2
【分析】
(1)根据绝对值和平方根的非负性求出x与y的值;
(2)先计算的值,即可得出的算术平方根.
【详解】
(1)由题可得:,
解得:,
∴,;
(2),
∵4的算术平方根为2,
∴的算术平方根为2.
【点睛】
本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键.
3、(1)8﹣;(2)4x4;(3)a2+2a+47,46
【分析】
(1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;
(2)先算乘方,再算乘除,然后合并同类项求解即可;
(3)先根据整式的乘法运算法则化简,然后合并同类项,最后代入求解即可.
【详解】
解:(1)原式=9﹣2﹣(﹣1)
=7﹣+1
=8﹣;
(2)原式=4x4+x4﹣x4
=4x4;
(3)原式=2(a2+4a+4)﹣4(a2﹣9)+3(a2﹣2a+1)
=2a2+8a+8﹣4a2+36+3a2﹣6a+3
=a2+2a+47,
当a=﹣1时,
原式=(﹣1)2+2×(﹣1)+47
=1﹣2+47
=46.
【点睛】
此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则.
4、(1)或 ;(2)x=−
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)把x−1可做一个整体求出其立方根,进而求出x的值.
【详解】
解:(1),
,
或 ;
(2)8(x−1)3=−27,
(x−1)3=−,
x−1=−,
x=−.
【点睛】
本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.
5、(1)﹣3,9;(2)≥9,12;(3)秒或秒.
【分析】
(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;
(2)由(1)得a=﹣3、b=9,则代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;
(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.
【详解】
解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,
∴|a+3|=0,(b﹣9)2=0,
∴a=﹣3,b=9,
故答案为:﹣3,9.
(2)∵a=﹣3,b=9,
∴代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,
当x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;
当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,
∵﹣12≤2x﹣6<12,
∴﹣12≤|x+3|﹣|x﹣9|<12;
当x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,
综上所述,|x+3|﹣|x﹣9|的最大值为12,
故答案为:≥9,12.
(3)∵点C表示的数是1,点B表示的数是9,
∴B、C两点之间的距离是9﹣1=8,
当点Q与点C重合时,则2t=8,
解得t=4,
当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t,
根据题意得9﹣2t﹣(﹣3﹣t)=2×2t,
解得t=;
当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t,
∵1+(2t﹣8)=2t﹣7,
∴点Q表示的数是2t﹣7,
根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),
解得t=,
综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍.
【点睛】
本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.
6、
【分析】
根据立方根、算术平方根解决此题.
【详解】
解:由题意得:2a+4=8,3a+b-1=16.
∴a=2,b=11.
∴4a+b=8+11=19.
∴4a+b的算术平方根为.
【点睛】
本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键.
7、(1);(2)
【分析】
(1)根据等式的性质和平方根的意义进行计算即可;
(2)根据等式的性质和立方根的意义进行计算即可.
【详解】
解:(1),
两边都除以4得,,
所以,;
(2),
两边都减1得,,
所以,,
解得,.
【点睛】
本题考查等式的性质、立方根、平方根的意义,解题的关键是掌握等式的性质、平方根、立方根的意义是正确解答的关键.
8、第二种,理由见解析
【分析】
根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.
【详解】
解:第一种方法:1×10×365=3650元
第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元
∵10485.75>3650
∴第二种方法得到的钱多.
【点睛】
本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.
9、(1);(2)1;(3);(4)
【分析】
(1)由题意易得,则有的整数部分为3,然后问题可求解;
(2)由题意易得,则有,,然后可得,然后根据完全平方公式可进行求解;
(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;
(4)根据题意可直接进行求解.
【详解】
解:(1)∵,
∴的整数部分为3,
∴的小数部分为;
故答案为;
(2)∵,
∴,,
∵与的小数部分分别为a和b,
∴,
∴;
(3)由可知,
∵,
∴的小数部分为,
∵x是整数,0<y<1,
∴,
∴;
故答案为;
(4)∵无理数(m为正整数)的整数部分为n,
∴的小数部分为,
∴的小数部分即为的小数部分加1,为;
故答案为.
【点睛】
本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.
10、(1);(2)或;(3).
【分析】
(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;
(2)利用平方差公式计算得出答案;
(3)分子分母同乘以(2-i)后,把分母化为不含i的数后计算.
【详解】
(1)
∵
∴原式
(2)
∵
∴
∵a、b是正整数
∴或
(3)
【点睛】
本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.
初中沪教版 (五四制)第十二章 实数综合与测试课时训练: 这是一份初中沪教版 (五四制)第十二章 实数综合与测试课时训练,共20页。试卷主要包含了100的算术平方根是,下列判断,3的算术平方根为,下列运算正确的是,下列说法正确的是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共1页。试卷主要包含了10的算术平方根是,下列运算正确的是,下列各数是无理数的是,关于的叙述,错误的是,若,则整数a的值不可能为等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共1页。试卷主要包含了下列各式正确的是.,下列各式中正确的是,在0.1010010001…,有一个数值转换器,原理如下等内容,欢迎下载使用。