![2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数综合测评试题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12706075/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数综合测评试题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12706075/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数综合测评试题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12706075/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业
展开这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业,共1页。试卷主要包含了若,则的值为,下列各数是无理数的是,三个实数,2,之间的大小关系等内容,欢迎下载使用。
沪教版(上海)七年级数学第二学期第十二章实数综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、化简计算﹣的结果是( )
A.12 B.4 C.﹣4 D.﹣12
2、9的平方根是( )
A.±3 B.-3 C.3 D.
3、下列说法正确的是( )
A.是最小的正无理数 B.绝对值最小的实数不存在
C.两个无理数的和不一定是无理数 D.有理数与数轴上的点一一对应
4、下列各数,,,,其中无理数的个数有( )
A.4个 B.3个 C.2个 D.1个
5、若,则的值为( )
A. B. C. D.或
6、下列各数是无理数的是( )
A. B.3.33 C. D.
7、在﹣3,0,2,这组数中,最小的数是( )
A. B.﹣3 C.0 D.2
8、三个实数,2,之间的大小关系( )
A.>>2 B.>2> C.2>> D.<2<
9、平方根和立方根都等于它本身的数是( )
A.±1 B.1 C.0 D.﹣1
10、下列各式中正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、的算术平方根是 _____;﹣64的立方根是 _____.
2、比较大小:______3(填“>”、“<”或“=”).
3、在实数范围内分解因式:a2﹣3b2=_____.
4、下列各数中:12,,,,0.1010010001…(每两个1之间的0依次加1),其中,无理数有_____个.
5、计算:-20-│-3│=______.
三、解答题(10小题,每小题5分,共计50分)
1、已知x,y满足,求x、y的值.
2、已知x-2的平方根是±2,x+2y+7的立方根是3,求3x+y的算术平方根.
3、计算:
4、计算:
5、计算:
(1)
(2)
6、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,,…,这样的分式是假分式;像,,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:;.解决下列问题:
(1)写出一个假分式为: ;
(2)将分式化为整式与真分式的和的形式为: ;(直接写出结果即可)
(3)如果分式的值为整数,求x的整数值.
7、计算:(1);
(2).
8、计算:
9、计算:
(1);
(2)﹣16÷(﹣2)2.
10、已知.
(1)求x与y的值;
(2)求x+y的算术平方根.
-参考答案-
一、单选题
1、B
【分析】
根据算术平方根和立方根的计算法则进行求解即可.
【详解】
解:,
故选B.
【点睛】
本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.
2、A
【分析】
根据平方根的定义进行判断即可.
【详解】
解:∵(±3)2=9
∴9的平方根是±3
故选:A.
【点睛】
本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.
3、C
【分析】
利用正无理数,绝对值,以及数轴的性质判断即可.
【详解】
解:、不存在最小的正无理数,不符合题意;
、绝对值最小的实数是0,不符合题意;
、两个无理数的和不一定是无理数,例如:,符合题意;
、实数与数轴上的点一一对应,不符合题意.
故选:C.
【点睛】
本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.
4、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:,是整数,属于有理数;
是分数,属于有理数;
无理数有,,共2个
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.
5、C
【分析】
化简后利用平方根的定义求解即可.
【详解】
解:∵,
∴x2-9=55,
∴x2=64,
∴x=±8,
故选C.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.
6、C
【分析】
无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.
【详解】
解:,是有理数,3.33和是有理数,是无理数,
故选:C.
【点睛】
本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.
7、B
【分析】
先确定3与的大小,再确定四个数的大小顺序,由此得到答案.
【详解】
解:∵9>7,
∴3>,
∴-3<,
∴-3<<0<2,
故选:B.
【点睛】
此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键.
8、A
【分析】
,根据被开方数的大小即判断这三个数的大小关系
【详解】
2<<
故选A
【点睛】
本题考查了实数大小比较,掌握无理数的估算是解题的关键.
9、C
【分析】
根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0.
【详解】
解:平方根是本身的数有0,立方根是本身的数有1,-1,0;
∴平方根和立方根都是本身的数是0.
故选C.
【点睛】
本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数a,b(b≥0),满足,那么a就叫做b的平方根;如果有两个数c、d满足,那么c就叫做d的立方根.
10、D
【分析】
由算术平方根的含义可判断A,B,C,由立方根的含义可判断D,从而可得答案.
【详解】
解:故A不符合题意;
故B不符合题意;
没有意义,故C不符合题意;
,运算正确,故D符合题意;
故选D
【点睛】
本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.
二、填空题
1、 ﹣4
【分析】
根据立方根、算术平方根的概念求解.
【详解】
解:=5,5的算术平方根是,
∴的算术平方根是;
﹣64的立方根是﹣4.
故答案为:,﹣4.
【点睛】
本题考查了立方根、算术平方根的知识,掌握各知识点的概念是解答本题的关键.
2、<
【分析】
由得,再利用不等式的基本性质可得,从而可得答案.
【详解】
解:∵,
∴,
∴.
故答案为:<.
【点睛】
本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.
3、(a+)(a﹣)a﹣)(a+)
【分析】
根据平方差公式因式分解,运用2次,注意分解要彻底
【详解】
a2﹣3b2
=a2﹣()2
=(a+)(a﹣).
【点睛】
本题考查了根据平方差公式因式分解,实数,解题的关键是注意在实数范围内分解要彻底.
4、2
【分析】
根据无理数的定义(无理数是指无限不循环小数)判断即可.
【详解】
解:无理数有,0.1010010001…(每两个1之间的0依次加1),共有2个,
故答案为:2.
【点睛】
本题考查了无理数,无理数是无限不循环小数,熟练掌握无理数的概念是本题的关键点.
5、
【分析】
直接根据算术平方根,绝对值,实数的运算法则计算即可.
【详解】
解:原式=,
故答案为:.
【点睛】
本题考查了算术平方根,绝对值,实数的运算,本题比较简单,属于基础题.
三、解答题
1、x=5;y=2
【分析】
根据非负数的性质可得关于x、y的方程组,求解可得其值;
【详解】
解:由题意可得,
联立得 ,
解方程组得:,
∴x、y的值分别为5、2.
【点睛】
此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.
2、5
【分析】
根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案.
【详解】
解:∵x-2的平方根是±2,
∴x-2=4,
解得:x=6,
∵x+2y+7的立方根是3,
∴6+2×y+7=27,
解得:y=7,
∴3x+y=25,
∴3x+y的算术平方根是5.
【点睛】
本题主要考查平方根以及立方根的性质、算术平方根,正确得出x,y的值是解题的关键.
3、
【分析】
先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.
【详解】
解:原式=1-8+4+
=.
【点睛】
本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.
4、
【分析】
根据立方根,算术平方根,绝对值的计算法则求解即可.
【详解】
解:
.
【点睛】
本题主要考查了立方根,算术平方根,绝对值,熟练掌握相关计算法则是解题的关键.
5、(1);(2)
【分析】
(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;
(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可.
【详解】
解:(1)
=
=
=;
(2)
=
=
=.
【点睛】
本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键.
6、(1);(2)1+;(3)x=0,1,3,4
【分析】
(1)根据定义即可求出答案.
(2)根据题意给出的变形方法即可求出答案.
(3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.
【详解】
解:(1)根据题意,是一个假分式;
故答案为:(答案不唯一).
(2);
故答案为:;
(3)∵,
∴x2=±1或x2=±2,
∴x=0,1,3,4;
【点睛】
本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.
7、(1);(2).
【分析】
(1)由题意利用算术平方根和立方根的性质进行化简计算即可;
(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.
【详解】
解:(1)
(2)
【点睛】
本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.
8、
【分析】
分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.
【详解】
解:原式
【点睛】
本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.
9、(1)(2)
【分析】
(1)根据有理数的混合运算进行计算即可;
(2)先根据求一个数的立方根求得为,进而根据有理数的混合运算进行计算即可
【详解】
(1)原式
(2)原式
【点睛】
本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.
10、(1),;(2)2
【分析】
(1)根据绝对值和平方根的非负性求出x与y的值;
(2)先计算的值,即可得出的算术平方根.
【详解】
(1)由题可得:,
解得:,
∴,;
(2),
∵4的算术平方根为2,
∴的算术平方根为2.
【点睛】
本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题,共21页。试卷主要包含了下列运算正确的是,下列各数是无理数的是,在下列各数,若,则的值为,100的算术平方根是,下列各式中,化简结果正确的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共23页。试卷主要包含了的相反数是,4的平方根是,下列各数中,最小的数是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共1页。试卷主要包含了若,则的值为,下列各式中正确的是,下列说法正确的是,下列各式中,化简结果正确的是,﹣π,﹣3,,的大小顺序是等内容,欢迎下载使用。