


数学七年级下册第十二章 实数综合与测试同步练习题
展开沪教版(上海)七年级数学第二学期第十二章实数课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、的相反数是( )
A.﹣ B. C. D.3
2、下列判断中,你认为正确的是( )
A.0的倒数是0 B.是分数 C.3<<4 D.的值是±3
3、下列说法不正确的是( )
A.0的平方根是0 B.一个负数的立方根是一个负数
C.﹣8的立方根是﹣2 D.8的算术平方根是2
4、若关于x的方程(k2﹣9)x2+(k﹣3)x=k+6是一元一次方程,则k的值为( )
A.9 B.﹣3 C.﹣3或3 D.3
5、下列运算正确的是( )
A. B. C. D.
6、以下正方形的边长是无理数的是( )
A.面积为9的正方形 B.面积为49的正方形
C.面积为8的正方形 D.面积为25的正方形
7、在实数,,,,,,,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有( )个
A.2 B.3 C.4 D.5
8、一个正方体的体积是5m3,则这个正方体的棱长是( )
A.m B.m C.25m D.125m
9、下列说法正确的是( )
A.5是25的算术平方根 B.的平方根是±6
C.(﹣6)2的算术平方根是±6 D.25的立方根是±5
10、已知2m﹣1和5﹣m是a的平方根,a是( )
A.9 B.81 C.9或81 D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若,且a,b是两个连续的整数,则的值为______.
2、如果一个数的平方等于16,那么这个数是________.
3、实数,在数轴上对应的点的位置如图所示,则|a-b|-|b+a|=______.
4、已知432=1849,442=1936,452=2025,462=2116,若n为整数,且n<<n+1,则n的值为 _____.
5、给定二元数对(p,q),其中或1,或1.三种转换器A,B,C对(p,q)的转换规则如下:
(1)在图1所示的“A—B—C”组合转换器中,若输入,则输出结果为________;
(2)在图2所示的“①—C—②”组合转换器中,若当输入和时,输出结果均为0,则该组合转换器为“____—C—____”(写出一种组合即可).
三、解答题(10小题,每小题5分,共计50分)
1、已知的平方根是,的立方根是2,是的整数部分,求的算术平方根.
2、计算:
(1);
(2).
3、求下列各式中的值:
(1); (2).
4、直接写出结果:
(1)____________;
(2)____________;
(3)的立方根=____________;
(4)若x2=(﹣7)2,则x=____________.
5、计算:
6、运算,满足
(1)求的值;
(2)求的值.
7、计算:
(1);
(2).
8、计算:
(1);
(2)﹣16÷(﹣2)2.
9、(1)计算
(2)计算
(3)解方程
(4)解方程组
10、已知.
(1)求x与y的值;
(2)求x+y的算术平方根.
-参考答案-
一、单选题
1、A
【分析】
根据只有符号不同的两个数互为相反数,可得一个数的相反数.
【详解】
解:的相反数是﹣,
故选:A.
【点睛】
此题主要考查相反数,解题的关键是熟知实数的性质.
2、C
【分析】
根据倒数的概念即可判断A选项,根据分数的概念即可判断B选项,根据无理数的估算方法即可判断C选项,根据算术平方根的概念即可判断D选项.
【详解】
解:A、0不能作分母,所以0没有倒数,故本选项错误;
B、属于无理数,故本选项错误;
C、因为 9<15<16,所以 3<<4,故本选项正确;
D、的值是3,故本选项错误.
故选:C.
【点睛】
此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念.
3、D
【分析】
直接利用算术平方根、平方根、立方根的定义分析得出答案.
【详解】
解:A、0的平方根是0,原说法正确,故此选项不符合题意;
B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;
C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;
D、8的算术平方根是2,原说法不正确,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.
4、B
【分析】
含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.
【详解】
解: 关于x的方程(k2﹣9)x2+(k﹣3)x=k+6是一元一次方程,
由①得:
由②得:
所以:
故选B
【点睛】
本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.
5、B
【分析】
依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可.
【详解】
A、,故A错误;
B、,故B正确;
C.,故C错误;
D.−|-2|=-2,故D错误.
故选:B.
【点睛】
本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键.
6、C
【分析】
理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出.
【详解】
解:A、面积为9的正方形的边长为3,是整数,属于有理数,故本选项不合题意;
B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;
C、面积为8的正方形的边长为,是无理数,故本选项符合题意;
D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意.
故选:C.
【点睛】
本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键.
7、C
【分析】
利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.
【详解】
有理数有:,,,,一共四个.
无理数有:,,,1.12112111211112…(每两 个2之间依次多一个1),一共四个.
故选:C.
【点睛】
此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.
8、B
【分析】
根据正方体的体积公式:V=a3,把数据代入公式解答.
【详解】
解:××=5(立方米),
答:这个正方体的棱长是米,
故选:B.
【点睛】
此题主要考查正方体体积公式的灵活运用,关键是熟记公式.
9、A
【分析】
如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的立方等于a,那么这个数叫做a的立方根;据此判断即可.
【详解】
解:A、5是25的算术平方根,正确,符合题意;
B、,6的平方根是±,错误,不符合题意;
C、(﹣6)2的算术平方根是6,错误,不符合题意;
D、25的平方根是±5,错误,不符合题意;
故选:A.
【点睛】
本题考查了平方根、算术平方根、立方根,熟练掌握相关定义是解本题的关键.
10、C
【分析】
分两种情况讨论求解:当2m﹣1与5﹣m是a的两个不同的平方根和当2m﹣1与5﹣m是a的同一个平方根.
【详解】
解:若2m﹣1与5﹣m互为相反数,
则2m﹣1+5﹣m=0,
∴m=﹣4,
∴5﹣m=5﹣(﹣4)=9,
∴a=92=81,
若2m﹣1=5﹣m,
∴m=2,
∴5﹣m=5﹣2=3,
∴a=32=9,
故选C.
【点睛】
本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.
二、填空题
1、7
【分析】
先判断出的取值范围,确定a和b的值,即可求解.
【详解】
解:∵,
∴a=3,b=4,
∴a+b=7.
故答案为:7.
【点睛】
本题考查了无理数的估算,正确估算出的取值范围是解题关键.
2、
【分析】
根据平方根的定义进行解答即可.
【详解】
解:∵
∴如果一个数的平方等于16,那么这个数是
故答案为:
【点睛】
本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)
3、2b
【分析】
由题意根据绝对值的意义即非负数的绝对值是它本身,负数的绝对值是它的相反数.同时注意数轴上右边的数总大于左边的数进行分析计算即可解答.
【详解】
解:由数轴可得:a-b<0,b+a<0,
∴|a-b|-|b+a|=b-a+b+a=2b.
故答案为:2b.
【点睛】
本题主要考查实数与数轴之间的对应关系及绝对值的化简,注意掌握根据点在数轴上的位置来正确判断出代数式值的符号.
4、44
【分析】
由已知条件的提示可得,即,从而可得答案.
【详解】
解:,
∴即
又∵,n为整数,
.
故答案为:44.
【点睛】
本题考查的是无理数的估算,掌握无理数的估算方法是解题的关键.
5、1 A A
【分析】
(1)利用转换器C的规则即可求出答案.
(2)利用转换器A、B、C的规则,写出一组即可.
【详解】
(1)解:利用转换器C的规则可得:输出结果为1.
(2)解:当输入时,若①对应A,此时经过A、C输出结果为(1,0),②对应A,输出结果恰好为0.
当输入时,若①对应A,此时经过A、C输出结果为(0,1),②对应A,输出结果恰好为0.
故答案为:1;A;A.
【点睛】
本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目.
三、解答题
1、
【分析】
直接利用平方根以及立方根和估算无理数的大小得出a,b,c的值进而得出答案.
【详解】
解:∵2a-1的平方根是±3,
∴2a-1=9,
解得:a=5,
∵3a+b-9的立方根是2,
∴15+b-9=8,
解得:b=2,
∵4<<5,c是的整数部分,
∴c=4,
∴a+2b+c=5+4+4=13,
∴a+2b+c的算术平方根为
【点睛】
此题主要考查了平方根以及立方根和估算无理数的大小,正确得出a,b,c的值是解题关键.
2、(1)1;(2)2
【分析】
(1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;
(2)根据同分母分式的加减法法则计算.
【详解】
解:(1)原式=1+2-2
=1.
(2)原式=
=
=2.
【点睛】
此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键..
3、(1);(2)
【分析】
(1)把原方程化为,再利用立方根的含义解方程即可;
(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.
【详解】
解:(1)
解得:
(2)
或
解得:
【点睛】
本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.
4、(1)8;(2)0;(3)2;(4)
【分析】
(1)根据算术平方根的计算法则求解即可;
(2)根据算术平方根的计算法则求解即可;
(3)根据立方根的求解方法求解即可;
(4)根据求平方根的方法解方程即可.
【详解】
解:(1)
,
故答案为:8;
(2)
,
故答案为:0;
(3)∵,
∴的立方根是2,
故答案为:2;
(4)∵x2=(﹣7)2,
∴x2=49,
∴x=±7.
故答案为:±7.
【点睛】
本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.
5、
【分析】
分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.
【详解】
解:原式
【点睛】
本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.
6、
(1)-10
(2)-22
【解析】
(1)
解:
(2)
解:
【点睛】
本题考查了有理数的混合运算,利用新运算代入求值即可,关键在于理解新运算,代入时候看清楚符号是否正确.
7、(1)1;(2)
【分析】
(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;
(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.
【详解】
解:(1),
=,
=1;
(2),
=,
=,
=,
=.
【点睛】
本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键.
8、(1)(2)
【分析】
(1)根据有理数的混合运算进行计算即可;
(2)先根据求一个数的立方根求得为,进而根据有理数的混合运算进行计算即可
【详解】
(1)原式
(2)原式
【点睛】
本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.
9、(1);(2);(3)或;(4).
【分析】
(1)先计算算术平方根与立方根,再计算加减法即可得;
(2)先化简绝对值,再计算实数的加减法即可得;
(3)利用平方根解方程即可得;
(4)利用加减消元法解二元一次方程组即可得.
【详解】
解:(1)原式
;
(2)原式
;
(3),
,
,
或;
(4),
由②①得:,
解得,
将代入①得:,
解得,
故方程组的解为.
【点睛】
本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.
10、(1),;(2)2
【分析】
(1)根据绝对值和平方根的非负性求出x与y的值;
(2)先计算的值,即可得出的算术平方根.
【详解】
(1)由题可得:,
解得:,
∴,;
(2),
∵4的算术平方根为2,
∴的算术平方根为2.
【点睛】
本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共21页。试卷主要包含了下列运算正确的是,下列计算正确的是.,下列说法,如果a,已知a=,b=-|-|,c=等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共24页。试卷主要包含了若,则的值为,若关于x的方程,下列说法正确的是,若,则整数a的值不可能为,若与互为相反数,则a等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共21页。试卷主要包含了如果a,若,则的值为,下列各式中,化简结果正确的是,下列各数是无理数的是,下列各数中,比小的数是等内容,欢迎下载使用。