初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后测评
展开沪教版(上海)七年级数学第二学期第十二章实数综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法正确的是( )
A.是的平方根 B.是的算术平方根 C.2是-4的算术平方根 D.的平方根是它本身
2、有一个数值转换器,原理如下:当输入的x为64时,输出的y是( )
A. B.2 C. D.
3、下列说法不正确的是( )
A.0的平方根是0 B.一个负数的立方根是一个负数
C.﹣8的立方根是﹣2 D.8的算术平方根是2
4、下列各数中,3.1415,,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )
A.0个 B.1个 C.2个 D.3个
5、下列各数中,比小的数是( )
A. B.- C. D.
6、实数在哪两个连续整数之间( )
A.3与4 B.4与5 C.5与6 D.12与13
7、下列说法正确的是( )
A.是分数
B.0.1919919991…(每相邻两个1之间9的个数逐次加1)是有理数
C.﹣3x2y+4x﹣1是三次三项式,常数项是1
D.单项式﹣的次数是2,系数为﹣
8、10的算术平方根是( )
A.10 B. C. D.
9、下列整数中,与-1最接近的是( )
A.2 B.3 C.4 D.5
10、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )
A.4 B.6 C.12 D.36
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若=2,则x=___.
2、x、y表示两个数,规定新运算“*”如下:x*y=2x﹣3y,那么(3*5)*(﹣4)=_____.
3、对于实数a,b,定义运算“*”如下:a*b=(a+b)2﹣(a﹣b)2.若(m+2)*(m﹣3)=24,则m的值为______.
4、的算术平方根是_____,的立方根是_____,的倒数是_____.
5、若规定“※”的运算法则为:,例如:则 =_________.
三、解答题(10小题,每小题5分,共计50分)
1、(1)计算:(﹣)×(﹣1)2021+﹣;
(2)求x的值:(3x+2)3﹣1=.
2、计算:.
3、计算
(1)
(2)
4、阅读下面的文字,解答问题.
现规定:分别用和表示实数x的整数部分和小数部分,如实数3.14的整数部分是,小数部分是;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即就是的小数部分,所以.
(1) , ; , .
(2)如果,,求的立方根.
5、已知正数a的两个不同平方根分别是2x﹣2和6﹣3x,a﹣4b的算术平方根是4.
(1)求这个正数a以及b的值;
(2)求b2+3a﹣8的立方根.
6、计算:+++.
7、计算:.
8、解方程:
(1)4(x﹣1)2=36;
(2)8x3=27.
9、计算:
(1);
(2).
10、求下列各式中的值:
(1); (2).
-参考答案-
一、单选题
1、A
【分析】
根据平方根的定义及算术平方根的定义解答.
【详解】
解:A、是的平方根,故该项符合题意;
B、4是的算术平方根,故该项不符合题意;
C、2是4的算术平方根,故该项不符合题意;
D、1的平方根是,故该项不符合题意;
故选:A.
【点睛】
此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键.
2、C
【分析】
直接利用立方根以及算术平方根、无理数分析得出答案.
【详解】
解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是,
即.
故选:C.
【点睛】
本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.
3、D
【分析】
直接利用算术平方根、平方根、立方根的定义分析得出答案.
【详解】
解:A、0的平方根是0,原说法正确,故此选项不符合题意;
B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;
C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;
D、8的算术平方根是2,原说法不正确,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.
4、D
【分析】
理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
3.1415,0.321是有限小数,属于有理数;
是分数,属于有理数;
无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.
故选:D.
【点睛】
此题考查了无理数.解题的关键是掌握实数的分类.
5、A
【分析】
直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.
【详解】
解:A. <-3,故A正确;
B. ->-3,故B错误;
C. >-3,故C错误;
D. >-3,故D错误.
故选A.
【点睛】
此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.
6、B
【分析】
估算即可得到结果.
【详解】
解:,
,
故选:B.
【点睛】
本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.
7、D
【分析】
根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可.
【详解】
解:A、是无限不循环小数,不是分数,故此选项不符合题意;
B、0.1919919991…(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;
C、﹣3x2y+4x﹣1是三次三项式,常数项是-1,故此选项不符合题意;
D、单项式﹣的次数是2,系数为﹣,故此选项符合题意;
故选D.
【点睛】
本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.
8、B
【分析】
直接利用算术平方根的求法即可求解.
【详解】
解:的算术平方根是,
故选:B.
【点睛】
本题主要考查了算术平方根,解题的关键是掌握求解的运算法则.
9、A
【分析】
先由无理数估算,得到,且接近3,即可得到答案.
【详解】
解:由题意,
∵,且接近3,
∴最接近的是整数2;
故选:A.
【点睛】
本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.
10、D
【分析】
根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.
【详解】
解:∵一个正数a的两个不同平方根是2x-2和6-3x,
∴2x-2+6-3x=0,
解得:x=4,
∴2x-2=2×4-2=8-2=6,
∴正数a=62=36.
故选择D.
【点睛】
本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.
二、填空题
1、8
【分析】
根据立方根的性值计算即可;
【详解】
∵=2,
∴;
故答案是8.
【点睛】
本题主要考查了立方根的性质,准确分析计算是解题的关键.
2、-6
【分析】
根据找出新的运算方法,再根据新的运算方法计算即可.
【详解】
故答案为:
【点睛】
本题考查了新定义下的实数运算,解题关键是根据题目给出的式子,找出新的运算方法,再根据新的运算方法计算要求的式子.
3、或4
【分析】
先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得.
【详解】
解:由题意得:,即,
,
或,
解得或,
故答案为:或4.
【点睛】
本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.
4、9
【分析】
根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可.
【详解】
解:=81的算术平方根是9,=的立方根是,的倒数是,
故答案为:-9,,.
【点睛】
本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.
5、-2
【分析】
依据定义的运算法则列式计算即可.
【详解】
==-2
故答案为:-2.
【点睛】
本题考查了新定义下的实数运算,理解新定义的运算法则并列式是解题的关键.
三、解答题
1、(1);(2).
【分析】
(1)先计算乘方、立方根和算术平方根,再计算加减法即可得;
(2)利用立方根解方程即可得.
【详解】
解:(1)原式
;
(2),
,
,
,
,
.
【点睛】
本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.
2、1
【分析】
根据平方根与立方根可直接进行求解.
【详解】
解:原式.
【点睛】
本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.
3、
(1)-2
(2)1
【分析】
(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;
(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;
(1)
解:
;
(2)
解:
.
【点睛】
本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.
4、(1)1,,3,;(2)2
【分析】
(1)先估算出和的范围,再根据题目规定的表示方法写出答案即可;
(2)先估算出,的范围,即可求出a,b的值,进一步即可求出结果.
【详解】
(1)∵1<<2,3<<4,
∴[]=1,<>=−1,[]=3,<>=−3,
故答案为:1,,3,;
(2)∵2<<3,10<<11,
∴<>=a=−2,[]=b=10,
∴,
∴的立方根是2.
【点睛】
本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.
5、(1),;(2)b2+3a﹣8的立方根是5
【分析】
(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;
(2)将(1)中所求a、b的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.
【详解】
解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x,
∴2x﹣2+6﹣3x=0,
∴x=4,
∴2x﹣2=6,
∴a=36,
∵a﹣4b的算术平方根是4,
∴a﹣4b=16,
∴36-4b=16
∴b=5;
(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,
∴b2+3a﹣8的立方根是5.
【点睛】
本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.
6、.
【分析】
先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.
【详解】
解:原式
.
【点睛】
本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.
7、.
【分析】
先计算算术平方根、立方根、乘方、化简绝对值,再计算实数的加减法即可得.
【详解】
解:原式
.
【点睛】
本题考查了算术平方根、立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.
8、(1)x=4或﹣2;(2)x=
【分析】
(1)先变形为(x﹣1)2=9,然后求9的平方根即可;
(2)先变形为x3=,再利用立方根的定义得到答案.
【详解】
解:(1)方程两边除以4得,(x﹣1)2=9,
∴x﹣1=±3,
∴x=4或﹣2;
(2)方程两边除以8得,x3=,
所以x=.
【点睛】
本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.
9、(1)1;(2)2
【分析】
(1)根据零指数幂定义,负整数指数幂定义及绝对值的性质分别化简,再计算加减法;
(2)根据同分母分式的加减法法则计算.
【详解】
解:(1)原式=1+2-2
=1.
(2)原式=
=
=2.
【点睛】
此题考查了计算能力:实数的混合运算,同分母分式的加减法,正确掌握零指数幂定义,负整数指数幂定义,绝对值的性质,同分母分式的加减法法则是解题的关键..
10、(1);(2)
【分析】
(1)把原方程化为,再利用立方根的含义解方程即可;
(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.
【详解】
解:(1)
解得:
(2)
或
解得:
【点睛】
本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共1页。试卷主要包含了在下列四个实数中,最大的数是,三个实数,2,之间的大小关系,若 ,则,16的平方根是,a为有理数,定义运算符号▽,下列各式中,化简结果正确的是等内容,欢迎下载使用。
初中数学第十二章 实数综合与测试课时练习: 这是一份初中数学第十二章 实数综合与测试课时练习,共1页。试卷主要包含了观察下列算式,对于两个有理数,的算术平方根是,在实数中,无理数的个数是,若,则整数a的值不可能为等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题,共1页。试卷主要包含了下列说法中,正确的是,下列各式中正确的是,下列说法正确的是,的值等于等内容,欢迎下载使用。