沪教版 (五四制)七年级下册第十二章 实数综合与测试课堂检测
展开沪教版(上海)七年级数学第二学期第十二章实数综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、实数在哪两个连续整数之间( )
A.3与4 B.4与5 C.5与6 D.12与13
2、在实数,,,,,,,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有( )个
A.2 B.3 C.4 D.5
3、64的立方根为( ).
A.2 B.4 C.8 D.-2
4、估计的值应该在( ).
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
5、在实数中,无理数的个数是( )
A.1 B.2 C.3 D.4
6、9的平方根是( )
A.±9 B.9 C.±3 D.3
7、下列判断:①10的平方根是±;②与互为相反数;③0.1的算术平方根是0.01;④()3=a;⑤=±a2.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
8、对于两个有理数、,定义一种新的运算:,若,则的值为( )
A. B. C. D.
9、点A在数轴上的位置如图所示,则点A表示的数可能是( )
A. B. C. D.
10、若与互为相反数,则a、b的值为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、计算____________;
2、在实数范围内分解因式:a2﹣3b2=_____.
3、若a、b为实数,且满足|a-3|+=0,则a-b的值为_____
4、若,则 的值为____________.
5、对于实数a,b,定义运算“*”如下:a*b=(a+b)2﹣(a﹣b)2.若(m+2)*(m﹣3)=24,则m的值为______.
三、解答题(10小题,每小题5分,共计50分)
1、计算
2、阅读下面的文字,解答问题.
现规定:分别用和表示实数x的整数部分和小数部分,如实数3.14的整数部分是,小数部分是;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即就是的小数部分,所以.
(1) , ; , .
(2)如果,,求的立方根.
3、(1)计算:;
(2)计算:(﹣2x2)2+x3•x﹣x5÷x;
(3)先化简再求值:2(a+2)2﹣4(a+3)(a﹣3)+3(a﹣1)2,其中a=﹣1.
4、计算
(1);
(2)
5、计算下列各题:
(1);
(2).
(3).
6、有理数a,b如果满足,那么我们定义a,b为一组团结数对,记为<a,b>.例如:和,因为,所以,则称和为一组团结数对,记为<>.
根据以上定义完成下列各题:
(1)找出2和2,1和3,-2和这三组数中的团结数对,记为 ;
(2)若<5,x>成立,则x的值为 ;
(3)若<a,b>成立,b为按一定规律排列成1,-3,9,-27,81,-243,……这列数中的一个,且b与b左右两个相邻数的和是567,求a的值.
7、求下列各式的值:
(1)
(2)
(3)
8、对于有理数a,b,定义运算:
(1)计算的值;
(2)填空_______:(填“>”、“<”或“=”)
(3)与相等吗?若相等,请说明理由.
9、任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72第一次[]=8,第二次[]=2,第三次[]=1,这样对72只需进行3次操作变为1.
(1)对10进行1次操作后变为_______,对200进行3次作后变为_______;
(2)对实数m恰进行2次操作后变成1,则m最小可以取到_______;
(3)若正整数m进行3次操作后变为1,求m的最大值.
10、计算:.
-参考答案-
一、单选题
1、B
【分析】
估算即可得到结果.
【详解】
解:,
,
故选:B.
【点睛】
本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.
2、C
【分析】
利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.
【详解】
有理数有:,,,,一共四个.
无理数有:,,,1.12112111211112…(每两 个2之间依次多一个1),一共四个.
故选:C.
【点睛】
此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.
3、B
【分析】
根据立方根的定义进行计算即可.
【详解】
解:∵43=64,
∴实数64的立方根是,
故选:B.
【点睛】
本题考查立方根,理解立方根的定义是正确解答的关键.
4、C
【分析】
根据25<29<36估算出的大小,然后可求得的范围.
【详解】
解:∵25<29<36,
∴<<,即5<<6.
5、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=2,=2,,
∴无理数只有,共2个.
故选:B.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
6、C
【分析】
根据平方根的定义解答即可.
【详解】
解:∵(±3)2=9,
∴9的平方根是±3.
故选:C.
【点睛】
此题考查了平方根的定义,解题的关键是熟练掌握平方根的定义.如果一个数的平方等于a,即,那么这个数叫做a的平方根.正数有两个平方根,且互为相反数,其中正的那个数也叫算数平方根,0的平方根和算数平方根都是0,负数没有平方根,也没有算术平方根.
7、C
【分析】
根据平方根和算术平方根的概念,对每一个答案一一判断对错.
【详解】
解:①10的平方根是±,正确;
②是相反数,正确;
③0.1的算术平方根是,故错误;
④()3=a,正确;
⑤a2,故错误;
正确的是①②④,有3个.
故选:C.
【点睛】
本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.
8、D
【分析】
根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.
【详解】
解: ,
,
,
解得:
故选D
【点睛】
本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.
9、A
【分析】
根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.
【详解】
解:观察得到点A表示的数在4至4.5之间,
A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;
B、∵9<10<16,∴3<<4,故该选项不符合题意;
C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;
D、∵25<30<36,∴5<<6,故该选项不符合题意;
故选:A.
【点睛】
本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.
10、D
【分析】
首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.
【详解】
解:∵与互为相反数,
∴+=0,
∴,
得:,
得:,解得:,
将代入①得:,解得:.
故选:D.
【点睛】
此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a、b的方程组并求解.
二、填空题
1、-3
【分析】
根据立方根、算术平方根可直接进行求解.
【详解】
解:原式=;
故答案为-3.
【点睛】
本题主要考查立方根、算术平方根,熟练掌握求一个数的立方根及算术平方根是解题的关键.
2、(a+)(a﹣)a﹣)(a+)
【分析】
根据平方差公式因式分解,运用2次,注意分解要彻底
【详解】
a2﹣3b2
=a2﹣()2
=(a+)(a﹣).
【点睛】
本题考查了根据平方差公式因式分解,实数,解题的关键是注意在实数范围内分解要彻底.
3、2
【分析】
根据非负性的性质解答,当两个非负数相加,和为0时,必须满足其中的每一项都等于0.
【详解】
解:∵|a-3|+=0,
∴a-3=0,b-1=0,
∴a=3,b=1,
∴a-b=3-1=2.
故答案为2.
【点睛】
本题考查了非负数的性质,涉及绝对值的性质,算术平方根的性质,有理数的减法.掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
4、
【分析】
根据算术平方根的定义可得,进而代入根据立方根的定义即可求解
【详解】
解:∵
∴
即
故答案为:
【点睛】
本题考查了算术平方根和立方根的定义,求得的值是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数), 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).
5、或4
【分析】
先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得.
【详解】
解:由题意得:,即,
,
或,
解得或,
故答案为:或4.
【点睛】
本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.
三、解答题
1、
【分析】
根据立方根,算术平方根,绝对值的计算法则进行求解即可.
【详解】
解:
.
【点睛】
本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.
2、(1)1,,3,;(2)2
【分析】
(1)先估算出和的范围,再根据题目规定的表示方法写出答案即可;
(2)先估算出,的范围,即可求出a,b的值,进一步即可求出结果.
【详解】
(1)∵1<<2,3<<4,
∴[]=1,<>=−1,[]=3,<>=−3,
故答案为:1,,3,;
(2)∵2<<3,10<<11,
∴<>=a=−2,[]=b=10,
∴,
∴的立方根是2.
【点睛】
本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.
3、(1)8﹣;(2)4x4;(3)a2+2a+47,46
【分析】
(1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;
(2)先算乘方,再算乘除,然后合并同类项求解即可;
(3)先根据整式的乘法运算法则化简,然后合并同类项,最后代入求解即可.
【详解】
解:(1)原式=9﹣2﹣(﹣1)
=7﹣+1
=8﹣;
(2)原式=4x4+x4﹣x4
=4x4;
(3)原式=2(a2+4a+4)﹣4(a2﹣9)+3(a2﹣2a+1)
=2a2+8a+8﹣4a2+36+3a2﹣6a+3
=a2+2a+47,
当a=﹣1时,
原式=(﹣1)2+2×(﹣1)+47
=1﹣2+47
=46.
【点睛】
此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则.
4、(1)1;(2).
【分析】
(1)计算乘方,零指数幂,算术平方根,负指数幂,再计算加减法即可;
(2)先立方根,零指数幂,绝对值化简,去括号合并即可.
【详解】
解:(1),
=,
=1;
(2),
=,
=.
【点睛】
本题考查实数混合计算,零指数幂,负指数幂,算术平方根,立方根,绝对值,掌握以上知识是解题关键.
5、
(1)-3
(2)-6x
(3)4y-3xz
【分析】
(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;
(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.
(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
(1)
解:原式
;
(2)
解:原式
;
(3)
解:
.
【点睛】
本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=anbn运算法则,整式的除法,理解a0=1(a≠0),(a≠0),牢记法则是解题关键.
6、
(1)<2,2>,<-2,>
(2)
(3)
【解析】
(1)
和2是一组团结数,即为<>,
和3不是一组团结数,
和是一组团结数,即为<>,
故答案为:<>,<>;
(2)
若<5,x>成立,则
故答案为:;
(3)
设b左面相邻的数为x,b为-3x,b右面相邻的数为9x.
由题意可得
解得 x=81
所以 b=-243
由于<a,b>成立,则a-243=-243a,解得.
【点睛】
本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键.
7、(1)6;(2);(3)
【分析】
利用立方与开立方互为逆运算进行化简求值.
【详解】
解:(1)
(2)
(3).
【点睛】
本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.
8、(1);(2)=;(3)相等,证明见详解.
【分析】
(1)按照给定的运算程序,一步一步计算即可;
(2)先按新定义运算,再比较大小;
(3)按新定义分别运算即可说明理由.
【详解】
解:(1);
(2),
,
∴=,
故答案是:=;
(3)相等
∵,,
∴=.
【点睛】
此题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果.
9、(1)3;1;(2);(3)的最大值为255
【详解】
解:(1)∵,
∴,
∴,
∴对10进行1次操作后变为3;
同理可得,
∴,
同理可得,
∴,
同理可得,
∴,
∴对200进行3次作后变为1,
故答案为:3;1;
(2)设m进行第一次操作后的数为x,
∵,
∴.
∴.
∴.
∵要经过两次操作.
∴.
∴.
∴.
故答案为:.
(3)设m经过第一次操作后的数为n,经过第二次操作后的数为x,
∵,
∴.
∴.
∴.
.
∴.
∵要经过3次操作,故.
∴.
∵是整数.
∴的最大值为255.
【点睛】
本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.
10、2
【分析】
先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题,共23页。试卷主要包含了以下正方形的边长是无理数的是,关于的叙述,错误的是等内容,欢迎下载使用。
数学七年级下册第十二章 实数综合与测试课时练习: 这是一份数学七年级下册第十二章 实数综合与测试课时练习,共20页。试卷主要包含了16的平方根是,下列计算正确的是.,的相反数是,实数在哪两个连续整数之间,的算术平方根是,下列整数中,与-1最接近的是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题,共1页。试卷主要包含了若 ,则,的相反数是,下列说法正确的是,下列判断,实数在哪两个连续整数之间等内容,欢迎下载使用。