搜索
    上传资料 赚现金
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数难点解析试题(无超纲)
    立即下载
    加入资料篮
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数难点解析试题(无超纲)01
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数难点解析试题(无超纲)02
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数难点解析试题(无超纲)03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试精练

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试精练,共1页。试卷主要包含了a为有理数,定义运算符号▽,如果a,下列说法正确的是,下列说法中,正确的是,在以下实数等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数难点解析

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、在实数中,无理数的个数是(  

    A.1 B.2 C.3 D.4

    2、对于两个有理数,定义一种新的运算:,若,则的值为(  

    A. B. C. D.

    3、下列整数中,与-1最接近的是(   

    A.2 B.3 C.4 D.5

    4、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽aa;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为(  )

    A. B.7 C. D.1

    5、如果ab分别是的整数部分和小数部分,那么的值是(   

    A.8 B. C.4 D.

    6、下列说法正确的是(   

    A.是最小的正无理数 B.绝对值最小的实数不存在

    C.两个无理数的和不一定是无理数 D.有理数与数轴上的点一一对应

    7、如图,数轴上的点ABOCD分别表示数,0,1,2,则表示数的点P应落在(    ).

    A.线段AB B.线段BO C.线段OC D.线段CD

    8、下列说法中,正确的是(   

    A.无限小数都是无理数

    B.数轴上的点表示的数都是有理数

    C.任何数的绝对值都是正数

    D.和为0的两个数互为相反数

    9、在以下实数:﹣π,3.1411,8,0.020020002…中,无理数有(  )

    A.2个 B.3个 C.4个 D.5个

    10、﹣π,﹣3,的大小顺序是(  )

    A. B.

    C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、下列各数:-1、,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是______.

    2、若一个正数的两个平方根分别为,则_____ ,这个正数是_________.

    3、在实数范围内分解因式:a2﹣3b2=_____.

    4、已知xy满足关系式=0,则xy的算术平方根为______.

    5、比较大小:_____﹣(填“<”或“=”或“>”).

    三、解答题(10小题,每小题5分,共计50分)

    1、求下列各式中x的值.

    (1)x-3)3=4

    (2)9(x+2)2=16

    2、求下列各数的算术平方根:

    (1)0.64            (2)

    3、解答下列各题:

    (1)计算:

    (2)分解因式:

    4、计算

    (1)

    (2)

    5、如果一个四位数m满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为,十位数字与个位数字之和记为,记Fm,若Fm)为整效,则称这个数为“运算数“,例如:∵F(5332)3,3是整数,∴5332是“运算数”;∵F(1722)不是整数,∴1722不是“运算数”.

    (1)请判断9981与2314是否是“运算数”,并说明理由.

    (2)若自然数st都是“运算数”,其中s=8910+11x(2≤x≤8,且x为整数);t的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且Ft)=4,规定:k,求所有k的值.

    6、若互为相反数,且x≠0,y≠0,求的值.

    7、(1)计算:(﹣)×(﹣1)2021+

    (2)求x的值:(3x+2)3﹣1=

    8、计算:.

    9、(1)计算:

    (2)分解因式:

    10、求下列各数的平方根:

    (1)121            (2)            (3)(-13)2                 (4)

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

    【详解】

    解:=2,=2,,

    ∴无理数只有共2个.

    故选:B.

    【点睛】

    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

    2、D

    【分析】

    根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.

    【详解】

    解:

    解得:

    故选D

    【点睛】

    本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.

    3、A

    【分析】

    先由无理数估算,得到,且接近3,即可得到答案.

    【详解】

    解:由题意,

    ,且接近3,

    最接近的是整数2;

    故选:A.

    【点睛】

    本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.

    4、A

    【分析】

    定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽aa;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.

    【详解】

    解:且当时,▽a=a

    ▽(-3)=-3,

    4+▽(2-5)=4-3=1>-2,

    a>-2时,▽a=-a

    ▽[4+▽(2-5)]=▽1=-1,

    故选:A.

    【点睛】

    此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.

    5、B

    【分析】

    先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可

    【详解】

    ab分别是的整数部分和小数部分,则

    故选B

    【点睛】

    本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键.

    6、C

    【分析】

    利用正无理数,绝对值,以及数轴的性质判断即可.

    【详解】

    解:、不存在最小的正无理数,不符合题意;

    、绝对值最小的实数是0,不符合题意;

    、两个无理数的和不一定是无理数,例如:,符合题意;

    、实数与数轴上的点一一对应,不符合题意.

    故选:C.

    【点睛】

    本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.

    7、B

    【分析】

    根据,得到,根据数轴与实数的关系解答.

    【详解】

    解:∵

    ∴表示的点在线段BO上,

    故选:B.

    【点睛】

    本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键.

    8、D

    【分析】

    根据实数的性质依次判断即可.

    【详解】

    解:A.∵无限不循环小数才是无理数.∴A错误.

    B.∵数轴上的点也可以表示无理数.∴B错误.

    C.∵0的绝对值是0,既不是正数也不是负数.∴C错误.

    D.∵和为0的两个数互为相反数.∴D正确.

    故选:D.

    【点睛】

    本题考查了无理数的定义,实数与数轴的关系,绝对值的性质,以及相反数的定义,熟练掌握各知识点是解答本题的关键.

    9、B

    【分析】

    根据“无限不循环的小数是无理数”可直接进行排除选项.

    【详解】

    解:∵

    ∴在以下实数:﹣π,3.1411,8,0.020020002…中,无理数有﹣π,0.020020002…;共3个;

    故选B.

    【点睛】

    本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键.

    10、B

    【分析】

    根据实数的大小比较法则即可得.

    【详解】

    解:

    故选:B.

    【点睛】

    本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.

    二、填空题

    1、3

    【分析】

    无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定.

    【详解】

    在-1、,0.1010010001…(相邻两个1之间0的个数增加1)中,

    无理数有,0.1010010001…(相邻两个1之间0的个数增加1)共3个.

    故答案为:3.

    【点睛】

    本题考查了实数的分类,理解有理数与无理数的概念是解题的关键.

    2、       

    【分析】

    根据平方根的性质,可得 ,从而得到 ,即可求解.

    【详解】

    解:∵一个正数的两个平方根分别为

    解得:

    ∴这个正数为

    故答案为:

    【点睛】

    本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数是解题的关键.

    3、(a+)(aa)(a+

    【分析】

    根据平方差公式因式分解,运用2次,注意分解要彻底

    【详解】

    a2﹣3b2

    a2﹣(2

    =(a+)(a).

    【点睛】

    本题考查了根据平方差公式因式分解,实数,解题的关键是注意在实数范围内分解要彻底.

    4、4

    【分析】

    直接利用算术平方根以及偶次方的性质得出xy的值,进而得出答案.

    【详解】

    解:∵

    x+4=0,y-2=0,

    解得:x=-4,y=2,

    xy=(-4)2=16,16的算术平方根是:4.

    故答案为:4.

    【点睛】

    本题主要考查了算术平方根以及偶次方的性质,正确得出xy的值是解题关键.

    5、>

    【分析】

    先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.

    【详解】

    解:

    故答案为:>

    【点睛】

    本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键.

    三、解答题

    1、(1)x=5;(2)x=-x=

    【分析】

    (1)把x-3可做一个整体求出其立方根,进而求出x的值;

    (2)把x+2可做一个整体求出其平方根,进而求出x的值.

    【详解】

    解:(1) (x−3)3=4,

    x-3)3=8,

    x-3=2,

    x=5;

    (2)9(x+2)2=16,

    x+2)2=

    x+2=

    x=-x=

    【点睛】

    本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.

    2、 (1) 0.8; (2)

    【分析】

    根据算术平方根的定义求解即可.

    【详解】

    解:(1)因为0.82=0.64,

    所以0.64的算术平方根是0.8,即=0.8.

    (2)因为

    所以的算术平方根是,即

    【点睛】

    本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.

    3、(1)①;②;(2)

    【分析】

    (1)①原式利用算术平方根、立方根性质,乘方的意义,以及绝对值的代数意义计算即可得到结果;②根据幂的乘方与积的乘方以及同底数幂的乘法法则进行计算,再进行合并同类项合并即可;

    (2)原式提取公因式x,再利用完全平方公式分解即可.

    【详解】

    解:(1)①

    (2)

    【点睛】

    此题考查了实数的运算、整式的乘除运算以及提公因式法与公式法的综合运用的知识点,熟练掌运算以及相关法则、方法是解本题的关键.

    4、

    (1)-2

    (2)1

    【分析】

    (1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;

    (2)先去绝对值,去括号,再进行实数的加、减混合计算即可;

    (1)

    解:

    (2)

    解:

    【点睛】

    本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.

    5、(1)9981是“运算数”,2314不是“运算数”;(2)738.5

    【分析】

    (1)根据“运算数”的定义计算即可;

    (2)根据找出,设,其中,且为整数,由,找出的值,代入中即可得解.

    【详解】

    (1),9是整数,∴9981是“运算数”,

    不是整数,∴2314不是“运算数”;

    (2)为整数,

    可为:8932,8943,8954,8965,8976,8987,8998,

    是“运算数”,

    的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,

    设百位上的数字为,个位数上的数字为,则千位上的数字为,十位上的数字为,其中为整数,

    ,即

    时,,其他情况不满足题意,

    【点睛】

    本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.

    6、

    【分析】

    根据互为相反数的和为零,可得方程,再根据等式的性质变形.

    【详解】

    由题意可得:,即

    【点睛】

    本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.

    7、(1);(2)

    【分析】

    (1)先计算乘方、立方根和算术平方根,再计算加减法即可得;

    (2)利用立方根解方程即可得.

    【详解】

    解:(1)原式

    (2)

    【点睛】

    本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.

    8、

    【分析】

    先计算算术平方根、立方根、乘方、化简绝对值,再计算实数的加减法即可得.

    【详解】

    解:原式

    【点睛】

    本题考查了算术平方根、立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.

    9、(1);(2)

    【分析】

    (1)先计算乘方运算,求解算术平方根,化简绝对值,再合并即可;

    (2)提取公因式即可.

    【详解】

    解:(1)解:原式

    (2)解:原式

    【点睛】

    本题考查的是立方根的含义,绝对值的化简,实数的运算,提公因式法分解因式,掌握“实数的运算及提公因式分解因式”是解本题的关键.

    10、 (1)±11; (2) ; (3)±13; (4)±8

    【分析】

    (1)直接根据平方根的定义求解;

    (2)把带分数化成假分数,再根据平方根的定义求解;

    (3)(4)先化简,再根据平方根的定义求解.

    【详解】

    含有乘方运算先求出它的幂,再开平方.

    (1)因为(±11)2=121,所以121的平方根是±11;

    (2),因为, 所以的平方根是

    (3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;

    (4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.

    【点睛】

    本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时训练: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时训练,共24页。试卷主要包含了下列各式正确的是.,下列实数比较大小正确的是,3的算术平方根为,对于两个有理数,100的算术平方根是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共21页。试卷主要包含了下列实数比较大小正确的是,下列等式正确的是,若 ,则,有一个数值转换器,原理如下等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共19页。试卷主要包含了下列各式中,化简结果正确的是,16的平方根是,若 ,则,观察下列算式等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map