搜索
    上传资料 赚现金
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数必考点解析试题(含答案及详细解析)
    立即下载
    加入资料篮
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数必考点解析试题(含答案及详细解析)01
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数必考点解析试题(含答案及详细解析)02
    2021-2022学年沪教版(上海)七年级数学第二学期第十二章实数必考点解析试题(含答案及详细解析)03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共1页。试卷主要包含了3的算术平方根为,若,则的值为,化简计算﹣的结果是,下列整数中,与-1最接近的是等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数必考点解析

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、点A在数轴上的位置如图所示,则点A表示的数可能是(   

    A. B. C. D.

    2、在下列四个实数中,最大的数是(  )

    A.0 B.﹣2 C.2 D.

    3、一个正数的两个平方根分别是2a,则a的值为(   

    A.1 B.﹣1 C.2 D.﹣2

    4、平方根和立方根都等于它本身的数是(   

    A.±1 B.1 C.0 D.﹣1

    5、3的算术平方根为(   

    A. B.9 C.±9 D.±

    6、若,则的值为(   

    A. B. C. D.

    7、下列各数,其中无理数的个数有(  )

    A.4个 B.3个 C.2个 D.1个

    8、化简计算的结果是(   

    A.12 B.4 C.﹣4 D.﹣12

    9、下列整数中,与-1最接近的是(   

    A.2 B.3 C.4 D.5

    10、可以表示(   

    A.0.2的平方根 B.的算术平方根

    C.0.2的负的平方根 D.的立方根

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、已知ab 是有理数,且满足,那么a=________,b =________.

    2、对于实数ab,定义运算“*”如下:a*b=(a+b2﹣(ab2.若(m+2)*(m﹣3)=24,则m的值为______.

    3、若一个正数的两个平方根分别为,则_____ ,这个正数是_________.

    4、当______ 时,分式的值为零

    5、如图,ABC在数轴上对应的点分别为a,﹣1,,其中a<﹣1,且ABBC,则|a|=_____.

    三、解答题(10小题,每小题5分,共计50分)

    1、已知一个正数x的平方根是a+3和2a-15,求ax的值

    2、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为abab).定义:若数mb3a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3a3=(ba)(b2+ab+a2).)

    (1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;

    (2)已知两个“复合数”的差是42,求这两个“复合数”.

    3、计算 

    4、求下列各式中的x

    (1)

    (2)

    5、计算:+++

    6、计算:

    (1)18+(﹣17)+7+(﹣8);

    (2)×(﹣12);

    (3)﹣22+|﹣1|+

    7、计算

    (1)

    (2)

    8、求下列各数的立方根:

    (1)729

    (2)

    (3)

    (4)

    9、计算:

    10、计算:

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.

    【详解】

    解:观察得到点A表示的数在4至4.5之间,

    A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;

    B、∵9<10<16,∴3<<4,故该选项不符合题意;

    C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;

    D、∵25<30<36,∴5<<6,故该选项不符合题意;

    故选:A.

    【点睛】

    本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.

    2、C

    【分析】

    先根据正数大于0,0大于负数,排除,然后再用平方法比较2与即可.

    【详解】

    解:正数负数,

    排除

    最大的数是2,

    故选:

    【点睛】

    本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.

    3、D

    【分析】

    根据正数有两个平方根,且互为相反数,即可求解.

    【详解】

    解:根据题意得:

    解得:

    故选:D

    【点睛】

    本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.

    4、C

    【分析】

    根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0.

    【详解】

    解:平方根是本身的数有0,立方根是本身的数有1,-1,0;

    ∴平方根和立方根都是本身的数是0.

    故选C.

    【点睛】

    本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数abb≥0),满足,那么a就叫做b的平方根;如果有两个数cd满足,那么c就叫做d的立方根.

    5、A

    【分析】

    利用算术平方根的定义求解即可.

    【详解】

    3的算术平方根是

    故选:A.

    【点睛】

    本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.

    6、B

    【分析】

    根据算术平方根、偶次方的非负性确定ab的值,然后代入计算.

    【详解】

    解:

    解得

    所以

    故选:B

    【点睛】

    本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.

    7、C

    【分析】

    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

    【详解】

    解:,是整数,属于有理数;

    是分数,属于有理数;

    无理数有,共2个

    故选:C.

    【点睛】

    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.

    8、B

    【分析】

    根据算术平方根和立方根的计算法则进行求解即可.

    【详解】

    解:

    故选B.

    【点睛】

    本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.

    9、A

    【分析】

    先由无理数估算,得到,且接近3,即可得到答案.

    【详解】

    解:由题意,

    ,且接近3,

    最接近的是整数2;

    故选:A.

    【点睛】

    本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.

    10、C

    【分析】

    根据平方根和算术平方根的定义解答即可.

    【详解】

    解:可以表示0.2的负的平方根,

    故选:C

    【点睛】

    此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.

    二、填空题

    1、-2    -1   

    【分析】

    利用平方与算术平方根的非负性即可解决.

    【详解】

    ,且

    故答案为:-2,-1

    【点睛】

    本题考查了有理数的平方的非负性质及算术平方根的非负性质,即几个非负数的和为零,则这几个数都为零.掌握这个性质是本题的关键.

    2、或4

    【分析】

    先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得.

    【详解】

    解:由题意得:,即

    解得

    故答案为:或4.

    【点睛】

    本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.

    3、       

    【分析】

    根据平方根的性质,可得 ,从而得到 ,即可求解.

    【详解】

    解:∵一个正数的两个平方根分别为

    解得:

    ∴这个正数为

    故答案为:

    【点睛】

    本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数是解题的关键.

    4、

    【分析】

    由分式的值为0的条件可得:,再解方程与不等式即可得到答案.

    【详解】

    解: 分式的值为零,

    由①得:

    由②得:

    综上:

    故答案为:

    【点睛】

    本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.

    5、

    【分析】

    先根据数轴上点的位置求出,即可得到,由此求解即可.

    【详解】

    解:∵ABC在数轴上对应的点分别为a,﹣1,

    故答案为:

    【点睛】

    本题主要考查了实数与数轴,解题的关键在于能够根据题意求出

    三、解答题

    1、4,49

    【分析】

    根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.

    【详解】

    解:∵正数有2个平方根,它们互为相反数,

    解得

    所以

    【点睛】

    本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.

    2、(1)12不是复合数;证明见解析;(2)98和56.

    【分析】

    (1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;

    (2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.

    【详解】

    (1)12不是复合数,

    ∵找不到两个整数ab,使a3b3=12,

    故12不是复合数,

    设“正点”P所表示的数为xx为正整数),

    ax﹣1,bx+1,

    ∴(x+1)3﹣(x﹣1)3

    =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)

    =2(3x2+1)

    =6x2+2,

    ∴6x2+2﹣2=6x2一定能被6整除;

    (2)设两个复合数为6m2+2和6n2+2(mn都是正整数),

    ∵两个“复合数”的差是42,

    ∴(6m2+2)﹣(6n2+2)=42,

    m2n2=7,

    mn都是正整数,

    ∴6m2+2=98,6n2+2=56,

    这两个“复合数”为98和56.

    【点睛】

    本题考查关于实数的新定义题型,理解新定义是解题的关键.

    3、

    【分析】

    直接根据有理数的乘方,算术平方根,立方根以及绝对值的性质化简各项,再进行加减运算得出答案.

    【详解】

    解:

    =

    =

    【点睛】

    本题主要考查了实数的运算,正确化简各数是解题的关键.

    4、

    (1)

    (2)

    【分析】

    (1)根据平方根定义开方,求出两个方程的解即可;

    (2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可.

    (1)

    开平方得,

    解得,

    (2)

    移项得,

    方程两边同除以8,得,

    开立方,得,

    【点睛】

    本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力.

    5、

    【分析】

    先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.

    【详解】

    解:原式

    【点睛】

    本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.

    6、(1)0;(2)1;(3)

    【分析】

    (1)根据有理数的加法计算法则求解即可;

    (2)根据有理数的乘法分配律求解即可;

    (3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可.

    【详解】

    解:(1)

    (2)

    (3)

    【点睛】

    本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键.

    7、

    (1)-2

    (2)1

    【分析】

    (1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;

    (2)先去绝对值,去括号,再进行实数的加、减混合计算即可;

    (1)

    解:

    (2)

    解:

    【点睛】

    本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.

    8、(1)9;(2);(3);(4)-5

    【分析】

    根据立方根的定义,找到一个数,使其立方等于已知的数,从而可得答案.

    【详解】

    解:(1)因为93=729,

    所以729的立方根是9,即

    (2),因为

    所以的立方根是,即

    (3)因为

    所以的立方根是,即

    (4).

    【点睛】

    本题考查的是求解一个数的立方根,掌握“利用立方根的含义求解一个数的立方根”是解本题的关键.

    9、

    【分析】

    先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.

    【详解】

    解:原式=1-8+4+

    =

    【点睛】

    本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.

    10、1

    【分析】

    根据平方根与立方根可直接进行求解.

    【详解】

    解:原式

    【点睛】

    本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习,共19页。试卷主要包含了若,则的值为,在以下实数,下列运算正确的是,下列各组数中相等的是,在0.1010010001…等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题,共1页。试卷主要包含了下列运算正确的是,下列各式中正确的是,0.64的平方根是等内容,欢迎下载使用。

    数学七年级下册第十二章 实数综合与测试精练: 这是一份数学七年级下册第十二章 实数综合与测试精练,共1页。试卷主要包含了实数在哪两个连续整数之间,以下正方形的边长是无理数的是,估计的值在,已知a=,b=-|-|,c=等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map