北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题
展开
这是一份北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题,共26页。试卷主要包含了,两地相距80km,甲,函数的图象如下图所示等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若直线y=kx+b经过第一、二、三象限,则函数y=bx﹣k的大致图象是( )A. B. C. D.2、在平面直角坐标系中,点P(-2,3)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3、如图,直线与分别交轴于点,,则不等式的解集为( ).A. B. C. D.或4、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是( )A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)5、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )A.乙比甲提前出发1h B.甲行驶的速度为40km/hC.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km6、自2021年9月16日起,合肥市出租车价格调整,调整后的价格如图所示,根据图中的数据,下列说法不正确的是( )A.出租车的起步价为10元 B.超过起步价以后,每公里加收2元C.小明乘坐2.8公里收费为10元 D.小丽乘坐10公里,收费25元7、函数的图象如下图所示:其中、为常数.由学习函数的经验,可以推断常数、的值满足( )A., B.,C., D.,8、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )A. B. C. D.9、已知4个正比例函数y=k1x,y=k2x,y=k3x,y=k4x的图象如图,则下列结论成立的是( )A.k1>k2>k3>k4 B.k1>k2>k4>k3C.k2>k1>k3>k4 D.k4>k3>k2>k110、下列命题为真命题的是( )A.过一点有且只有一条直线与已知直线平行 B.在同一平面内,若,,则C.的算术平方根是9 D.点一定在第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)2、已知函数f(x)=+x,则f()=_____.3、某长途汽车客运公司规定旅客可免费携带一定质量的行李.当行李的质量超过规定时,需付的行李费(元)与行李质量之间满足一次函数关系,部分对应值如下表:…304050…(元)…468…则旅客最多可免费携带行李的质量是______kg.4、写出一个一次函数,使其函数值随着自变量的值的增大而增大:______.5、如图,直线交x轴于点A,交y轴于点B,点A1:坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以点A为圆心,AB1长为半径画弧交x轴于点A2;过点A2作x轴的垂线交直线于点B2,以点A为圆心,AB2长为半径画弧交x轴于点A3;……按此做法进行下去,点B2021的坐标为____.三、解答题(5小题,每小题10分,共计50分)1、如图,把长方形纸片OABC放入直角坐标系中,使OA,OC分别落在x轴、y轴的正半轴上,连接AC,将△ABC沿AC翻折,点B落在点D,CD交x轴于点E,已知CB=8,AB=4(1)求AC所在直线的函数关系式;(2)求点E的坐标和△ACE的面积;(3)坐标轴上是否存在点P(不与A、C、E重合),使得△CEP的面积与△ACE的面积相等,若存在请直接写出点P的坐标.2、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.3、甲、乙两人从同一点出发,沿着跑道训练400米速度跑,乙比甲先出发,并且匀速跑完全程,甲出发一段时间后速度提高为原来的3倍.设乙跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲比乙晚出发 s,甲提速前的速度是每秒 米,m= ,n= ;(2)当x为何值时,甲追上了乙?(3)在甲提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过30米时,请你直接写出x的取值范围.4、张明和爸爸一起出去跑步,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张明继续前行,5分钟后也原路返回,两人恰好同时到家.张明和爸爸在整个过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示.(1)的值为______;(2)张明开始返回时与爸爸相距______米;(3)第______分钟吋,两人相距900米.5、小美打算在“母亲节”买一束百合和康乃馨组合的鲜花送给妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且康乃馨不多于9支,设买康乃馨x支,买这束鲜花所需总费用为w元.①求w与x之间的函数关系式;②请你帮小美设计一种使费用最少的买花方案,并求出最少费用. -参考答案-一、单选题1、D【解析】【分析】直线y=kx+b,当时,图象经过第一、二、三象限;当时,图象经过第一、三、四象限;当时,图象经过第一、二、四象限;当时,图象经过第二、三、四象限.【详解】解:直线y=kx+b经过第一、二、三象限,则,时,函数y=bx﹣k的图象经过第一、三、四象限,故选:D.【点睛】本题考查一次函数的图象与性质,是重要考点,掌握相关知识是解题关键.2、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P(-2,3)在第二象限,故选:B.【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.3、C【解析】【分析】观察图象,可知当x<0.5时,y=kx+b>0,y=mx+n<0;当0.5<x<2时,y=kx+b<0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,二者相乘为正的范围是本题的解集.【详解】解:由图象可得,当x>2时,(kx+b)<0,(mx+n)>0,则(kx+b)(mx+n)<0,故A错误;当0<x<2时,kx+b<0,mx+n<0,(kx+b)(mx+n)>0,但是没有包含所有使得(kx+b)(mx+n)>0的解集,故B错误;当时,kx+b<0,mx+n<0,故(kx+b)(mx+n)>0,且除此范围之外都不能使得(kx+b)(mx+n)>0,故C正确;当x<0.5时,y=kx+b>0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,则(kx+b)(mx+n)<0,故D错误;故选:C.【点睛】本题考查了利用函数图象来解一元一次不等式,数形结合是解答本题的关键.4、A【解析】【分析】根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.【详解】解:∵轴,且,点B在第二象限,∴点B一定在点A的左侧,且两个点纵坐标相同,∴,即,故选:A.【点睛】题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.5、C【解析】【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;C、乙行驶的速度为 ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;D、; ∴0.75h或1.125h时,乙比甲多行驶10km,∴选项D说法正确,不符合题意.故选C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答6、C【解析】【分析】根据(5,15),(7,19),确定函数的解析式,计算y=10时,x的值,结合生活实际,解答即可.【详解】设起步价以后函数的解析式为y=kx+b,把(5,15),(7,19)代入解析式,得,解得,∴y=2x+5,当y=10时,x=2.5,当x=10时,y=25,∴C错误,D正确,B正确,A正确,故选C.【点睛】本题考查了一次函数的实际应用,熟练掌握待定系数法,理解生活意义是解题的关键.7、B【解析】【分析】由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.【详解】解:由图象可知,当x>0时,y<0,∵,∴ax<0,a<0;x=b时,函数值不存在,即x≠b,结合图象可以知道函数的x取不到的值大概是在1的位置,∴b>0.故选:B.【点睛】本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.8、A【解析】【分析】设直线的解析式为 ,把点,点代入,可得到直线的解析式为,从而得到直线的解析式为 ,再由直线与直线关于轴对称,可得点关于轴对称的点为 ,然后设直线的解析式为 ,可得直线的解析式为,最后将直线与直线的解析式联立,即可求解.【详解】解:设直线的解析式为 ,把点,点代入,得: ,解得:,∴直线的解析式为,∵将直线向下平移8个单位得到直线,∴直线的解析式为 ,∵点关于轴对称的点为 ,设直线的解析式为 ,把点 ,点代入,得: ,解得:,∴直线的解析式为,将直线与直线的解析式联立,得: ,解得: ,∴直线与直线的交点坐标为.故选:A【点睛】本题主要考查了一次函数的平移,一次函数与二元一次方程组的关系,熟练掌握一次函数的平移特征,一次函数与二元一次方程组的关系是解题的关键.9、A【解析】【分析】首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.【详解】解:首先根据直线经过的象限,知:k3<0,k4<0,k1>0,k2>0,再根据直线越陡,|k|越大,知:|k1|>|k2|,|k4|>|k3|.则k1>k2>k3>k4,故选:A.【点睛】本题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.10、B【解析】【分析】直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;B、在同一平面内,如果a⊥b,b⊥c,则a//c,原命题是真命题;C、的算术平方根是3,原命题是假命题;D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题1、220≤P≤440【解析】【分析】由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.【详解】解:三者关系式为:P·R=U²,可得,把电阻的最小值R=110代入得,得到输出功率的最大值,把电阻的最大值R=220代入得,得到输处功率的最小值,即用电器输出功率P的取值范围是220≤P≤440.故答案为:220≤P≤440.【点睛】本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.2、【解析】【分析】根据题意直接把x=代入解析式进行计算即可求得答案.【详解】解:∵函数f(x)=+x,∴f()=+=2,故答案为:2.【点睛】本题考查函数图象上点的坐标特征以及二次根式运算,注意掌握图象上点的坐标适合解析式.3、10【解析】【分析】利用待定系数法求一次函数解析式,令y=0时求出x的值即可.【详解】解:∵y是x的一次函数,∴设y=kx+b(k≠0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:,∴函数表达式为y=0.2x-2,当y=0时,0=0.2x-2,解得x=10,∴旅客最多可免费携带行李的质量是10kg,故答案为:10.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.4、(答案不唯一)【解析】【分析】根据其函数值随着自变量的值的增大而增大,可得该一次函数的自变量系数大于0,即可求解.【详解】解:∵其函数值随着自变量的值的增大而增大,∴该一次函数的自变量系数大于0,∴该一次函数解析式为.故答案为:(答案不唯一)【点睛】本题主要考查了一次函数的性质,求函数值,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.5、【解析】【分析】根据题意可以写出A和B的前几个点的坐标,从而可以发现各点的变化规律,从而可以写出点B2021的坐标.【详解】解:∵直线,令,则,A1(1,0),轴,将代入得点B1坐标为(1,2),在中,同理,点B2的坐标为点A3坐标为,点B3的坐标为,……∴点Bn的坐标为当n=2021时,点B2021的坐标为,即故答案为:【点睛】本题考查一次函数图象上点的坐标特征、规律型,勾股定理,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题1、(1)y=;(2)E(3,0),10;(3)P1(-2,0),P2(0,),P3(0,-).【解析】【分析】(1)先求出A、C的坐标,然后用待定系数法求解即可;(2)先证明CE=AE;设CE=AE=x,则OE=8-x,在直角△OCE中,OC2+OE2=CE2,则,求出x得到OE的长即可求解;(3)分P在x轴上和y轴上两种情况讨论求解即可.【详解】解:(1)∵OA,OC分别落在x轴、y轴的正半轴上,CB=8,AB=4. ∴A(8,0)、C(0,4), 设直线AC解析式为y=kx+b,∴,解得:,∴AC所在直线的函数关系式为y=; (2)∵长方形OABC中,BC∥OA,∴∠BCA=∠CAO,又∵∠BCA=∠ACD,∴∠ACD=∠CAO,∴CE=AE;设CE=AE=x,则OE=8-x,在直角△OCE中,OC2+OE2=CE2,则,解得:x=5;则OE=8-5=3,则E(3,0),∴S△ACE=×5×4=10;(3)如图3-1所示,当P在x轴上时,∵,∴,∴,∵E点坐标为(3,0),∴P点坐标为(-2,0)或(8,0)(舍去,与A点重合) 如图3-2所示,当P在y轴上时,同理可得,∴,∵C点坐标为(0,4),∴P点坐标为(0,)或(0,);综上所述,坐标轴上是在点P(-2,0)或(0,)或(0,)使得△CEP的面积与△ACE的面积相等. 【点睛】本题主要考查了求一次函数解析式,三角形面积,坐标与图形,勾股定理与折叠,等腰三角形的性质与判定,平行线的性质等等,解题的关键在于鞥个熟练掌握相关知识进行求解.2、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【解析】【分析】先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标.【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5).【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标.3、(1)10,2,90,100;(2)当x为70s时,甲追上了乙;(3)当甲、乙之间的距离不超过30米时,x的取值范围是55≤x≤85或92.5≤x≤100.【解析】【分析】(1)根据图象x=10时,y=0知乙比甲早10s;由x=10时y=40,求得提速前速度;根据时间=路程÷速度可求提速后所用时间,即可得到m值,进而得出n的值;(2)先求出OA和BC解析式,甲追上乙即行走路程y相等,求图象上OA与BC相交时,列方程求出x的值;(3)根据题意列出等于30时的方程,一种是甲乙都行进时求出分界点,一种是甲到终点,乙差30求出范围即可.【详解】解:(1)由题意可知,当x=10时,y=0,故甲比乙晚出发10秒;当x=10时,y=0;当x=30时,y=40;故甲提速前的速度是(m/s);∵甲出发一段时间后速度提高为原来的3倍,∴甲提速后速度为6m/s,故提速后甲行走所用时间为:(s),∴m=30+60=90(s)∴n=400÷(s);故答案为10;2;90;100;(2)设OA段对应的函数关系式为y=kx,∵A(90,360)在OA上,∴90k=360,解得k=4,∴y=4x.设BC段对应的函数关系式为y=k1x+b,∵B(30,40)、C(90,400)在BC上,∴,解得,∴y=6x-140,由乙追上了甲,得4x=6x-140,解得x=70.答:当x为70秒时,甲追上了乙.(3)由题意可得,,解得x=55或x=85,即55≤x≤85时,甲、乙之间的距离不超过30米; 当4x=400﹣30时,解得x=92.5,即92.5≤x≤100时,甲、乙之间的距离不超过30米; 由上可得,当甲、乙之间的距离不超过30米时,x的取值范围是55≤x≤85或92.5≤x≤100.【点睛】本题考查一次函数的图象与应用及利用待定系数法求函数解析式,解答时注意数形结合,属中档题.4、(1)3000;(2);(3)18或【解析】【分析】(1)根据一次函数图象,两人同时从家出发后的速度一致,根据张明的路程除以时间即可求得速度,根据题意,即可求得的值;(2)根据(1)中的值代入函数解析式,求得,根据图象求得,根据题意求得当时,的值即可求解;(3)分两种情况讨论,①当张明的爸爸返回时,张明继续跑,和张明返回时,②根据(2)的结论令,解方程即可求解【详解】解:(1)米每分钟根据题意张明继续前行,5分钟后也原路返回,故答案为:;(2)设将代入,将点代入,得解得,根据题意时,(米)故答案为:1500;(3)①当张明的爸爸返回时,张明继续跑,和张明返回时,设两人从家出发,至20分钟返回时的解析式为,将代入,即解得即解得②两人都返回时,则解得第30分钟时,两人相距900米故答案为:18或30【点睛】本题考查了一次函数的应用,根据函数图象获取信息是解题的关键.5、(1)买一支康乃馨需4元,买一支百合需5元;(2)①w=﹣x+55;②买9支康乃馨,买2支百合费用最少,最少费用为46元.【解析】【分析】(1)设买一支康乃馨需m元,买一支百合需n元,根据题意列方程组求解即可;(2)根据康乃馨和百合的费用之和列出函数关系式,然后根据函数的性质和康乃馨不多于9支求函数的最小值即可.【详解】解:(1)设买一支康乃馨需m元,买一支百合需n元, 则根据题意得:,解得: ,答:买一支康乃馨需4元,买一支百合需5元; (2)①根据题意得:w=4x+5(11﹣x)=﹣x+55,②∵康乃馨不多于9支,∴x≤9,∵﹣1<0,∴w随x的增大而减小,∴当x=9时,w最小, 即买9支康乃馨,买11﹣9=2支百合费用最少,wmin=﹣9+55=46(元),答:w与x之间的函数关系式:w=﹣x+55,买9支康乃馨,买2支百合费用最少,最少费用为46元.【点睛】本题主要考查一次函数的性质和二元一次方程组的应用,关键是利用题意写出函数关系式.
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题,共24页。试卷主要包含了函数y=的自变量x的取值范围是,直线y=2x-1不经过的象限是,点P的坐标为,已知一次函数y=ax+b,若一次函数y=kx+b等内容,欢迎下载使用。
这是一份初中第十四章 一次函数综合与测试测试题,共24页。试卷主要包含了如图,过点A等内容,欢迎下载使用。
这是一份北京课改版第十四章 一次函数综合与测试同步练习题,共28页。