初中数学北京课改版八年级下册第十四章 一次函数综合与测试综合训练题
展开
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试综合训练题,共26页。试卷主要包含了已知点A等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是( )
A.y0C.y3
2、甲、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S(千米)与行驶时间t(小时)之间的关系如图所示,下列四种说法:①甲的速度为40千米/时;②乙的速度始终为50千米/时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t =0.5或t =2或t =4,其中正确的是( )
A.①③B.①④C.①②③D.①③④
3、下列命题为真命题的是( )
A.过一点有且只有一条直线与已知直线平行
B.在同一平面内,若,,则
C.的算术平方根是9
D.点一定在第四象限
4、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量( )
A.小于12件B.等于12件C.大于12件D.不低于12件
5、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2B.2
C.4D.﹣4
6、已知点A(-2,y1)和B(-1,y2)都在直线y=-3x-1上,则y1,y2的大小关系是( )
A.y1>y2B.y1<y2C.y1=y2D.大小不确定
7、如图,直线l是一次函数的图象,下列说法中,错误的是( )
A.,
B.若点(-1,)和点(2,)是直线l上的点,则
C.若点(2,0)在直线l上,则关于x的方程的解为
D.将直线l向下平移b个单位长度后,所得直线的解析式为
8、已知4个正比例函数y=k1x,y=k2x,y=k3x,y=k4x的图象如图,则下列结论成立的是( )
A.k1>k2>k3>k4B.k1>k2>k4>k3
C.k2>k1>k3>k4D.k4>k3>k2>k1
9、如图,一次函数的图象经过点,则下列结论正确的是( )
A.图像经过一、二、三象限B.关于方程的解是
C.D.随的增大而减小
10、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
A.-3B.-1C.2D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、直线y=x-2与y轴交点坐标是_____.
2、函数的定义域是_____.
3、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)
4、将一次函数的图像沿x轴向左平移4个单位长度,所得到的图像对应的函数表达式是______.
5、(1)每一个含有未知数x和y的二元一次方程,都可以改写为______的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条_____,这条直线上每个点的坐标(x,y)都是这个二元一次方程的解.
(2)从“数”的角度看,解方程组,相当于求_____为何值时对应的两个函数值相等,以及这两个函数值是______;从形的角度看,解方程组相当于确定两条相应直线的______.
三、解答题(5小题,每小题10分,共计50分)
1、已知,一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,正方形BOCD的顶点D在第二象限内,直线DE交AB于点E,交x轴于点F,
(1)求点D的坐标和AB的长;
(2)若△BDE≌△AFE,求点E的坐标;
(3)若点P、点Q是直线BD、直线DF上的一个动点,当△APQ是以AP为直角边的等腰直角三角形时,直接写出Q点的坐标.
2、在平面直角坐标系中,的顶点,,的坐标分别为,,.与关于轴对称,点,,的对应点分别为,,.请在图中作出,并写出点,,的坐标.
3、在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,的顶点的坐标分别是,,.
(1)求的面积;
(2)在图中作出关于轴的对称图形;
(3)写出点,的坐标.
4、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.
(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1);
(2)请画出△ABC关于y轴对称的图形△A1B1C1,并写出点B1的坐标为 ;
(3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 .
5、艺术节前夕,为了增添节日气氛,某校决定采购大小两种型号的气球装扮活动场地,计划购买4盒大气球,x盒小气球().A、B两个商场中,两种型号的气球原价一样,都是大气球50元/盒,小气球10元/盒,但给出了不同的优惠方案:
A商场:买一盒大气球,送一盒小气球;
B商场:一律九折优惠;
(1)分别写出在两个商场购买时需要的花费y(元)与x(盒)之间的关系式;
(2)如果学校最终决定购买10盒小气球,那么选择在哪个商场购买比较合算?
-参考答案-
一、单选题
1、A
【解析】
【分析】
观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x>2时,y<0.
【详解】
∵一次函数y=kx+b(k≠0)与x轴的交点坐标为(2,0),
∴y随x的增大而减小,
∴当x>2时,y<0.
故选:A.
【点睛】
本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为
.
2、D
【解析】
【分析】
分析图像上每一段表示的实际意义,再根据行程问题计算即可.
【详解】
①甲的速度为,故正确;
②时,已的速度为,后,乙的速度为,故错误;
③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;
④由①②③得:甲的函数表达式为:,
已的函数表达为:时,,时,,
时,甲、乙两名运动员相距,
时,甲、乙两名运动员相距,
时,甲、乙两名运动员相距为,故正确.
故选:D.
【点睛】
本题为一次函数应用题,此类问题主要通过图象计算速度,即分析每一段表示的实际意义进而求解.
3、B
【解析】
【分析】
直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.
【详解】
解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;
B、在同一平面内,如果a⊥b,b⊥c,则a//c,原命题是真命题;
C、的算术平方根是3,原命题是假命题;
D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
4、C
【解析】
【分析】
根据图象找出在的上方即收入大于成本时,x的取值范围即可.
【详解】
解:根据函数图象可知,当时,,即产品的销售收入大于销售成本,该公司盈利.
故选:C.
【点睛】
本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x的取值范围是本题的关键.
5、B
【解析】
【分析】
当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
【详解】
解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
∵|k|越大,它的图象离y轴越近,
∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
故选:B.
【点睛】
本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
6、A
【解析】
【分析】
首先判定出一次函数的增减性为y随x的增大而减小,然后即可判断出y1,y2的大小关系.
【详解】
解:∵一次函数y=-3x-1中,k=-3<0,
∴y随x的增大而减小,
∵-2<-1,
∴y1>y2.
故选:A.
【点睛】
此题考查了一次函数的增减性,比较一次函数中函数值的大小,解题的关键是根据题意判断出一次函数的增减性.
7、B
【解析】
【分析】
根据一次函数图象的性质和平移的规律逐项分析即可.
【详解】
解:A.由图象可知,,,故正确,不符合题意;
B. ∵-1
相关试卷
这是一份2020-2021学年第十四章 一次函数综合与测试测试题,共23页。试卷主要包含了下列命题中,真命题是,在下列说法中,能确定位置的是,已知点A等内容,欢迎下载使用。
这是一份初中数学第十四章 一次函数综合与测试同步达标检测题,共25页。
这是一份初中第十四章 一次函数综合与测试同步练习题,共24页。试卷主要包含了已知一次函数y=,一次函数y=,点P在第二象限内,P点到x等内容,欢迎下载使用。