终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析京改版八年级数学下册第十四章一次函数同步练习练习题(名师精选)

    立即下载
    加入资料篮
    2022年必考点解析京改版八年级数学下册第十四章一次函数同步练习练习题(名师精选)第1页
    2022年必考点解析京改版八年级数学下册第十四章一次函数同步练习练习题(名师精选)第2页
    2022年必考点解析京改版八年级数学下册第十四章一次函数同步练习练习题(名师精选)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题

    展开

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题,共25页。试卷主要包含了点A个单位长度.,已知点,下面哪个点不在函数的图像上.等内容,欢迎下载使用。
    京改版八年级数学下册第十四章一次函数同步练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知一次函数与一次函数中,函数、与自变量x的部分对应值分别如表1、表2所示:
    表1:
    x


    0
    1




    3
    4


    表2:
    x


    0
    1



    5
    4
    3


    则关于x的不等式的解集是( )
    A. B. C. D.
    2、已知点A(a+9,2a+6)在y轴上,a的值为(  )
    A.﹣9 B.9 C.3 D.﹣3
    3、直线y=﹣ax+a与直线y=ax在同一坐标系中的大致图象可能是(  )
    A. B.
    C. D.
    4、点A(-3,1)到y轴的距离是(  )个单位长度.
    A.-3 B.1 C.-1 D.3
    5、如图,在平面直角坐标系中,直线l1:y=x+1与直线l2:y=x交于点A1,过A1作x轴的垂线,垂足为B1,过B1作l2的平行线交l1于A2,过A2作x轴的垂线,垂足为B2,过B2作l2的平行线交l1于A3,过A3作x轴的垂线,垂足为B3…按此规律,则点An的纵坐标为(  )

    A.()n B.()n+1 C.()n﹣1+ D.
    6、已知点(﹣4,y1)、(2,y2)都在直线y=﹣x+b上,则y1和y2的大小关系是( )
    A.y1>y2 B.y1=y2 C.y1<y2 D.无法确定
    7、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
    A.-3 B.-1 C.2 D.4
    8、下面哪个点不在函数的图像上( ).
    A.(-2,3) B.(0,-1) C.(1,-3) D.(-1,-1)
    9、已知点(﹣1,y1)、(2,y2)在函数y=﹣2x+1图象上,则y1与y2的大小关系是( )
    A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
    10、已知一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,则该函数图象所经过的象限为(  )
    A.一、二、三 B.二、三、四 C.一、三、四 D.一、二、四
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,已知两条直线l1:y=2x+m和l2:y=﹣x+n相交于P(1,3).请完成下列探究:
    (1)设l1和l2分别与x轴交于A,B两点,则线段AB的长为 _____.
    (2)已知直线x=a(a>1)分别与l1l2相交于C,D两点,若线段CD长为2,则a的值为 _____.
    2、如果 ,y=2,那么x = ______
    3、在平面直角坐标系中,点A(1,4),B(4,2),C(m,﹣m).当以点A、B、C为顶点构成的△ABC周长最小时,m的值为______.
    4、已知函数y=,那么自变量x的取值范围是_________.
    5、将函数的图像向下平移2个单位长度,则平移后的图像对应的函数表达式是______.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知y与x﹣1成正比例,且当x=3时,y=4
    (1)求出y与x之间的函数解析式;
    (2)当x=1时,求y的值.
    2、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图1中线段AB所示.慢车离甲地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图1中线段AC所示.根据图象解答下列问题.
    (1)甲、乙两地之间的距离为_____km,线段AB的解析式为_____.两车在慢车出发_____小时后相遇;
    (2)设慢车行驶时间x(0≤x≤6,单位:h),快、慢车之间的距离为S(km).
    ①当两车之间距离S=300km时,求x的值;
    ②图2是S与x的函数图象的一部分,请补全S与x之间的函数图象(标上必要的数据).

    3、在平面直角坐标系中,A(a,0),B(b,0),C(c,0),a≠0且a,b,c满足条件.
    (1)直接写出△ABC的形状 ;
    (2)点D为射线BC上一动点,E为射线CO上一点,且∠ACB=120°,∠ADE=60°
    ① 如图1,当点E与点C重合时,求AD的长;
    ② 如图2,当点D运动到线段BC上且CD=2BD,求点E的坐标;

    4、如图,在平面直角坐标系中,直线交轴于点,交轴正半轴于点,且,正比例函数交直线于点,轴于点,轴于点.

    (1)求直线的函数表达式和点的坐标;
    (2)在轴负半轴上是否存在点,使得为等腰三角形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.
    5、已知函数y=(k-3)xk+2是正比例函数,求代数式k2-1的值.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    用待定系数法求出和的表达式,再解不等式即可得出答案.
    【详解】
    由表得:,在一次函数上,
    ∴,
    解得:,
    ∴,
    ,在一次函数上,
    ∴,
    解得:,
    ∴,
    ∴为,
    解得:.
    故选:D.
    【点睛】
    本题考查用待定系数法求一次函数解析式以及解一元一次不等式,掌握待定系数法求解析式是解题的关键.
    2、A
    【解析】
    【分析】
    根据y轴上点的横坐标为0列式计算即可得解.
    【详解】
    解:∵点A(a+9,2a+6)在y轴上,
    ∴a+9=0,
    解得:a=-9,
    故选:A.
    【点睛】
    本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
    3、D
    【解析】
    【分析】
    若y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a<0,-a>0,,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断.
    【详解】
    解:A、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;
    B、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;
    C、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;
    D、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;
    故选D.
    【点睛】
    本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).
    4、D
    【解析】
    【分析】
    由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果.
    【详解】
    解:由题意知到轴的距离为
    到轴的距离是个单位长度
    故选D.
    【点睛】
    本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点到轴的距离=;到轴的距离=.
    5、A
    【解析】
    【分析】
    联立直线l1与直线l2的表达式并解得:x=,y=,故A1(,),依次求出:点A2的纵坐标为、A3的纵坐标为,即可求解.
    【详解】
    解:联立直线l1与直线l2的表达式并解得:x=,y=,故A1(,);
    则点B1(,0),则直线B1A2的表达式为:y=x+b,
    将点B1坐标代入上式并解得:直线B1A2的表达式为:y3=x﹣,
    将表达式y3与直线l1的表达式联立并解得:x=,y=,即点A2的纵坐标为;
    同理可得A3的纵坐标为,
    …按此规律,则点An的纵坐标为()n,
    故选:A.
    【点睛】
    本题为探究规律类题目,求此类和一次函数的交点有关的规律题,需要将前几个交点一次求出来,然后找到点的横坐标,纵坐标之间的关系,可能出现周期的规律,或者后面的数时前面数的倍数或差相同等的规律.
    6、A
    【解析】
    【分析】
    由题意直接根据一次函数的性质进行分析即可得到结论.
    【详解】
    解:∵直线y=﹣x+b中,k=﹣<0,
    ∴y将随x的增大而减小.
    ∵﹣4<2,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题考查一次函数的图象性质,注意掌握对于一次函数y=kx+b(k≠0),当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.
    7、B
    【解析】
    【分析】
    先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
    【详解】
    解:根据题意,
    ∵y1>y2,
    ∴,
    解得:,
    ∴,
    ∴;,
    ∵当x<1时,y1>y2,

    ∴,
    ∴;
    ∴k的值可以是-1;
    故选:B.
    【点睛】
    本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
    8、D
    【解析】
    【分析】
    将A,B,C,D选项中的点的坐标分别代入,根据图象上点的坐标性质即可得出答案.
    【详解】
    解:A.将(-2,3)代入,当x=-2时,y=3,此点在图象上,故此选项不符合题意;
    B.将(0,-1)代入,当x=0时,y=-1,此点在图象上,故此选项不符合题意;
    C.将(1,-3)代入,当x=1时,y=-3,此点在图象上,故此选项不符合题意;
    D.将(-1,-1)代入,当x=-1时,y=1,此点不在图象上,故此选项符合题意.
    故选:D.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式,反之,只要满足函数解析式就一定在函数的图象上.
    9、A
    【解析】
    【分析】
    先根据一次函数的解析式判断出函数的增减性,再根据−1<2即可得出结论.
    【详解】
    解:∵一次函数y=−2x+1中,k=−2<0,
    ∴y随着x的增大而减小.
    ∵点(﹣1,y1)、(2,y2)是一次函数y=−2x+1图象上的两个点,−1<2,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象的增减性是解答此题的关键.
    10、D
    【解析】
    【分析】
    根据题意画出函数大致图象,根据图象即可得出结论.
    【详解】
    解:如图,

    ∵一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,
    ∴该函数图象所经过一、二、四象限,
    故选:D.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键.
    二、填空题
    1、 4.5 ##
    【解析】
    【分析】
    (1)把P(1,3)分别代入直线l1、 l2,求出直线,再求出两直线与x轴的交点,即可求解;
    (2)分别表示出C,D的坐标,根据线段CD长为2,得到关于a的方程,故可求解.
    【详解】
    解:(1)把P(1,3)代入l1:y=2x+m得3=2+m
    解得m=1
    ∴l1:y=2x+1
    令y=0,∴2x+1=0
    解得x=-,
    ∴A(-,0)
    把P(1,3)代入l2:y=﹣x+n得3=-1+n
    解得n=4
    ∴l1:y=﹣x+4
    令y=0,∴﹣x+4=0
    解得x=4,
    ∴B(4,0)
    ∴AB=4-(-)=4.5;
    故答案为:4.5;
    (2)∵已知直线x=a(a>1)分别与l1、l2相交于C,D两点,
    设C点坐标为(a,y1),D点坐标为(a,y2),
    ∴y1=2a+1,y2=﹣a+4
    ∵CD=2

    解得a=或a=
    ∵a>1
    ∴a=.
    故答案为:.
    【点睛】
    此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法、一次函数的性质特点.
    2、3
    【解析】
    【分析】
    把y=2代入 y=x计算即可.
    【详解】
    解:∵y=2,
    ∴2=x,
    ∴x=3
    故答案为:3.
    【点睛】
    本题考查了正比例函数的问题,做题的关键是掌握将y值代入即可求解.
    3、
    【解析】
    【分析】
    作B点关于直线y=﹣x的对称点B',连接AB',则有BC=B'C,所以△ABC周长最小值为AB+AB'的长,求出直线直线AB'的解析式为y=x+,联立方程组,可求C点坐标.
    【详解】
    解:∵C(m,﹣m),
    ∴点C在直线y=﹣x上,
    作B点关于直线y=﹣x的对称点B',连接AB',
    ∵BC=B'C,
    ∴BC+AC=B'C+AC≥AB',
    ∴△ABC周长=AB+BC+AC=AB+B'C+AC≥AB+AB',
    ∴△ABC周长最小值为AB+AB'的长,
    ∵B(4,2),
    ∴B'(﹣2,﹣4),
    ∵A(1,4),
    设直线AB'的解析式为y=kx+b,
    ∴,
    ∴,
    y=x+,
    联立方程组,
    解得,
    ∴C(﹣,),
    ∴m=﹣,
    故答案为:﹣.

    【点睛】
    本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,掌握待定系数法求函数解析式的方法是解题的关键.
    4、
    【解析】
    【分析】
    根据二次根式有意义的条件列出不等式,解不等式得到答案.
    【详解】
    解:由题意得,,
    解得,,
    故答案为:.
    【点睛】
    本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.
    5、
    【解析】
    【分析】
    根据“上加下减”的原则求解即可.
    【详解】
    解:将直线向下平移2个单位长度,所得的函数解析式为.
    故答案为:.
    【点睛】
    本题考查的是一次函数的图象的平移,熟知函数图象变换的法则是解答此题的关键.
    三、解答题
    1、(1)y=2x﹣2;(2)0
    【解析】
    【分析】
    (1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;
    (2)利用(1)中关系式求出自变量为1时对应的函数值即可.
    【详解】
    解:(1)设y=k(x﹣1),
    把x=3,y=4代入得(3﹣1)k=4,解得k=2,
    所以y=2(x﹣1),
    即y=2x﹣2;
    (2)当x=1时,y=2×1﹣2=0.
    【点睛】
    本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.
    2、(1)450;y1=﹣150x+450,2;(2)①或4;②见解析.
    【解析】
    【分析】
    (1)由一次函数的图象可得甲、乙两地之间的距离为450km,设线段AB的解析式为y1=k1x+b1,利用待定系数法可得出AB的解析式,根据路程、时间和速度的关系即可得答案;
    (2)根据题意得出函数解析式为S=,①把S=300代入解析式分别求出x的值即可;②根据题意得出函数解析式,画出函数的图象即可.
    【详解】
    解:(1)由图象可得:甲、乙两地之间的距离为450km;
    设线段AB的解析式为y1=k1x+b1,
    ∵A(0,450),B(3,0),
    ∴,
    解得:,
    ∴线段AB的解析式为y1=450﹣150x(0≤x≤3);
    设两车在慢车出发x小时后相遇,
    ()x=450,
    解得:x=2,
    答:两车在慢车出发2小时后相遇.
    故答案为:450;y1=﹣150x+450;2;
    (2),
    根据题意得出S与慢车行驶时间x(h)的函数关系式如下:S=,
    ①当0≤x

    相关试卷

    北京课改版八年级下册第十四章 一次函数综合与测试习题:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试习题,共22页。试卷主要包含了已知点A,点在第四象限,则点在第几象限等内容,欢迎下载使用。

    数学八年级下册第十四章 一次函数综合与测试一课一练:

    这是一份数学八年级下册第十四章 一次函数综合与测试一课一练,共26页。试卷主要包含了已知函数和 的图象交于点P,一次函数y=mx﹣n,一次函数y=等内容,欢迎下载使用。

    数学八年级下册第十四章 一次函数综合与测试当堂检测题:

    这是一份数学八年级下册第十四章 一次函数综合与测试当堂检测题,共23页。试卷主要包含了若点在第三象限,则点在.,已知点A,若一次函数y=kx+b,在下列说法中,能确定位置的是,下列命题中,真命题是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map