北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题
展开这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题,共21页。试卷主要包含了2020年某果园随机从甲等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一组数据:1,3,3,4,5,它们的极差是( )
A.2B.3C.4D.5
2、某校随机抽查了10名学生的体育成绩,得到的结果如表:
下列说法正确的是( )
A.这10名同学的体育成绩的方差为50
B.这10名同学的体育成绩的众数为50分
C.这10名同学的体育成绩的中位数为48分
D.这10名同学的体育成绩的平均数为48分
3、为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计.下图是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是( )
A.由这两个统计图可知喜欢“科普常识”的学生有90人
B.若该年级共有1200名学生,则可估计喜爱“科普常识”的学生约有360个
C.由这两个统计图不能确定喜欢“小说”的人数
D.在扇形统计图中,“漫画”所在扇形的圆心角为
4、用计算器计算方差时,要首先进入统计计算状态,需要按键( )
A.B.
C.D.
5、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是( )
A.14,0.7B.14,0.4C.8,0.7D.8,0.4
6、某企业对其生产的产品进行抽检,抽检结果如表:
若该企业生产该产品10000件,估计不合格产品的件数为( )
A.80B.100C.150D.200
7、如表是某次射击比赛中10名选手的射击成绩(环):
关于这10名选手的射击环数,下列说法不正确的是( )
A.众数是8B.中位数是5C.平均数是8D.方差是1.2
8、2020年某果园随机从甲、乙、丙、丁四个品种的苹果树上各采摘了10棵.每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如下表所示:
今年准备从这四个品种中选出一种产量既高又稳定的苹果树进行种植.应选的品种是( )
A.甲B.乙C.丙D.丁
9、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为( )
A.3和2B.4和3C.5和2D.6 和2
10、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是=1.2,=1.1,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )
A.乙比甲稳定B.甲比乙稳定
C.甲和乙一样稳定D.甲、乙稳定性没法对比
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一组数据:2021,2021,2021,2021,2021,2021的方差是______.
2、已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为_____.
3、现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.70米,方差分别为、,则身高较整齐的球队是________队(填“甲”或“乙”).
4、一个盒子中有5个红球和若干个白球,它们除颜色外都相同,从中随机摸出一个球,记下它的颜色后再放回盒子中.不断重复这个过程,共摸了100次球,发现有25次摸到红球,请估计盒子中白球大约有_____个.
5、甲、乙两名篮球运动员进行每组10次的投篮训练,5组投篮结束后,两人的平均命中数都是7次,方差分别是,,则在本次训练中,运动员__________的成绩更稳定.
三、解答题(5小题,每小题10分,共计50分)
1、某校学生会为了解该校2860名学生喜欢球类活动的情况,采取抽样调查的办法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成右边的两幅不完整的统计图(如图(1),图(2),要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息,解答下列问题:
(1)在这次研究中,一共调查了 名学生.
(2)喜欢排球的人数在扇形统计图中所占的圆心角是 度.
(3)补全频数分布折线统计图.
(4)估计该校喜欢排球的学生有多少人?
2、某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:
(1)在这次问卷调查中,一共抽查了多少名学生;
(2)请将统计图②补充完整;
(3)如果全校有3600名学生,请问全校学生中,最喜欢“踢毽”活动的学生约有多少人.
3、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图.请根据相关信息,解答下列问题:
(1)该校抽查八年级学生的人数为 ,图中的值为 ;
(2)请将条形统计图补充完整;
(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;
(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人?
4、某中学为了解八年学级生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:
3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4
根据以上数据,得到如下不完整的频数分布表:
(1)表格中的a= ,b= ;
(2)在这次调查中,参加志愿者活动的次数的众数为 ,中位数为 ;
(3)若该校八年级共有700名学生,根据调查统计结果,估计该校八年级学生参加志愿者活动的次数大于4次的人数.
5、甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:
根据以上信息,整理分析数据如下:
(1)填空:a= ;b= ;c= ;
(2)从平均数和中位数的角度来比较,成绩较好的是 ;(填“甲”或“乙”)
(3)若需从甲、乙两名队员中选择一人参加比赛,你认为选谁更加合适?请说明理由.
-参考答案-
一、单选题
1、C
【分析】
根据极差的定义,即一组数据中最大数与最小数之差计算即可;
【详解】
极差是;
故选C.
【点睛】
本题主要考查了极差的计算,准确计算是解题的关键.
2、C
【分析】
根据众数、中位数、平均数及方差的定义列式计算即可.
【详解】
这组数据的平均数为×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,
这组数据的方差为×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,
∵这组数据中,48出现的次数最多,
∴这组数据的众数是48,故B选项错误,
∵这组数据中间的两个数据为48、48,
∴这组数据的中位数为=48,故C选项正确,
故选:C.
【点睛】
本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键.
3、C
【分析】
根据两个统计图的特征依次分析各选项即可作出判断,先根据其他类求得总人数,进而根据扇形统计图求得喜欢“科普常识”的学生人数,从而判断A选项,根据喜欢“科普常识”的学生所占的百分比乘以全年级人数即可判断B选项,根据总人数减去其他项的人数即可求的喜欢“小说”的人数,从而判断C选项,根据喜欢“漫画”的人数求得百分比,进而求得所占圆心角的度数从而判断D选项.
【详解】
A.喜欢“科普常识”的学生有30÷10%×30%=90人,正确,不符合题意;
B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有1200×30%=360个,正确,不符合题意;
C.喜欢“小说”的人数为30÷10%-60-90-30=120人,错误,故本选项符合题意.
D.在扇形统计图中,“漫画”所在扇形的圆心角为360°×60÷(30÷10%)=72°,正确,不符合题意;
故选C.
【点睛】
本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
4、B
【分析】
由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.
【详解】
解:用计算器求方差的一般步骤是:
①使计算器进入MODE 2状态;
②依次输入各数据;
③按求的功能键,即可得出结果.
故选:B.
【点睛】
本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.
5、D
【分析】
根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得
【详解】
依题意,成绩分式为整数,则大于80.5的频数为5+3=8,
学生总数为.
则频率为.
故选D.
【点睛】
本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键.
6、D
【分析】
求出抽取件数不合格的概率,用样本估计总体即可得出10000件产品不合格的件数.
【详解】
抽查总体数为:(件),
不合格的件数为:(件),
,
(件).
故选:D
【点睛】
本题考查用样本估计总体,求出样本的不合格率来估计总体的不合格率是解题的关键.
7、B
【分析】
根据众数、中位数、平均数及方差的定义逐一计算可得答案.
【详解】
解:这组数据中8出现次数最多,即众数为8;
其中位数是第5、6个数据的平均数,故其中位数为;
平均数为,
方差为,
故选:B.
【点睛】
本题主要考查方差等知识,解题的关键是掌握众数、中位数、平均数及方差的计算方法.
8、B
【分析】
首先比较平均数,平均数较高的是甲和乙,进而根据方差比较选出方差较小的即可.
【详解】
根据表格可知甲、乙的平均数较高,则表示产量高,比较甲、乙的方差,乙的方差比甲小,则乙品种的苹果树产量高又稳定,
故选B.
【点睛】
本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.
9、D
【分析】
先根据平均数定义求出x,再根据方差公式计算即可求解.
【详解】
解:由题意得,
解得x=6,
∴这组数据的方差是.
故选:D
【点睛】
本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.
10、A
【分析】
根据方差的性质解答.
【详解】
解:∵甲乙两人的方差分别是=1.2,=1.1,
∴乙比甲稳定,
故选:A.
【点睛】
此题考查了方差的性质:方差越小越稳定.
二、填空题
1、0
【分析】
根据方差的定义求解.
【详解】
∵这一组数据都一样
∴平均数为2021
∴方差=
故答案为:0.
【点睛】
本题考查方差的计算.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、
【分析】
先由平均数是5计算的值,再根据方差的计算公式,直接计算可得.
【详解】
解:一组数据7,2,5,,8的平均数是5,
,
,
,
故答案为:.
【点睛】
本题考查的是算术平均数和方差的计算,解题的关键是掌握方差的计算公式:一般地设个数据,,,的平均数为,则方差.
3、甲
【分析】
根据方差的意义可判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
【详解】
解:∵S2甲<S2乙
∴身高较整齐的球队是甲队.
故答案为:甲.
【点睛】
本题考查方差的定义与意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
4、15
【分析】
由共摸了100次球,发现有25次摸到红球知摸到红球的概率为0.25,设盒子中白球有个,可得,解之即可.
【详解】
解:设盒子中白球大约有个,
根据题意,得:,
解得,
经检验是分式方程的解,
所以估计盒子中白球大约有15个,
故答案为:15.
【点睛】
本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息,解题的关键是用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
5、乙
【分析】
先根据乙的方差比甲的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.
【详解】
解:∵,,
∴,
∴乙运动员的成绩更稳定;
故答案为:乙.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
三、解答题
1、(1)100;(2)36;(3)见解析;(4)286
【分析】
(1)用乒乓球的人数除以其百分比即可得到调查的学生数;
(2)先计算出喜欢篮球的人数,得到喜欢排球的人数,根据公式计算喜欢排球的人数在扇形统计图中所占的圆心角度数;
(3)根据(2)的数据补全统计图;
(4)用学校的总人数乘以喜欢排球的比例即可得到答案.
【详解】
解:调查的学生有(名),
故答案为:100;
(2)喜欢篮球的人数有(名),
喜欢排球的人数是100-30-20-40=10(名),
∴喜欢排球的人数在扇形统计图中所占的圆心角是,
故答案为:36;
(3)如图:
(4)该校喜欢排球的学生有(人).
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
2、(1)200人;(2)见解析;(3)人
【分析】
(1)根据喜欢“球类”的人数以及百分比,求解即可;
(2)根据总人数,求得跳绳的人数,补全统计图即可;
(3)求得“踢毽”活动的百分比,即可求解;
【详解】
解:(1)从统计图中可以得到喜欢“球类”的人数为80人,所占百分比为,
则总人数为人,
故答案为200人
(2)喜欢“跳绳”的人数有人,补全统计图,如下:
(3)最喜欢“踢毽”活动的学生约为人,
故答案为人
【点睛】
此题考查了统计的基本知识,涉及了计算样本容量,统计图以及根据样本估算总体,解题的关键是读懂统计图,从统计图中获取有关数据.
3、(1)100,18;(2)见解析;(3)(4)72人
【分析】
(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;
(2)根据总数减去其他三项即可求得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图;
(3)根据条形统计图可知阅读时间为1.5小时的人数最多,故学生每天平均课外阅读时间的众数为1.5,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数
(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为,400乘以18%即可求得.
【详解】
(1)总人数为:(人);
故答案为:
(2)每天平均课外阅读时间为1.5小时的人数为:(人)
补充条形统计图如下:
(3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5
中位数为1.5,平均数为;
(4)(人)
估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有人
【点睛】
本题考查了条形统计图与扇形统计图信息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键.
4、(1)4,5;(2)4,4;(3)245人
【分析】
(1)根据所给数据分别求出次数为3和次数为5的人数即可;
(2)根据中位数和众数的定义求解即可;
(3)先求出样本中八年级学生参加志愿者活动的次数大于4次的人数占比,然后估计总体即可.
【详解】
解:(1)由所给数据可知:次数为3的人数有4人,即;次数为5的人数有5人,即,
故答案为:4,5;
(2)由表格可知次数为4的人数最多,即参加志愿者活动的次数的众数为4,
∵一共有20名学生参加调查,
∴中位数为次数排在第10位和第11位的两个数据的平均数,即,
故答案为:4,4;
(3)由表格可知,样本中一共有5+2=7名学生参加志愿者活动的次数大于4次,
∴估计该校八年级学生参加志愿者活动的次数大于4次的人数为人.
【点睛】
本题主要考查了中位数,众数,频数分布表,用样本估计总体,解题的关键在于能够熟知相关知识.
5、(1)7;7.5;4.2;(2)乙;(3)选择乙参加比赛,理由见解析
【分析】
(1)根据平均数公式计算甲,利用中位数先把以成绩从低到高排序,取中间两个成绩7、8的平均数,利用方差公式求c即可;
(2)根据平均数两者均为7,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,
(3)甲乙平均数相同,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,从方差看乙的方差大于甲,只说明乙的成绩没有甲稳定,从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,乙队员要比甲队员参赛好.
【详解】
解:(1)甲的平均成绩为
乙的成绩从低到高排列为:3,4,6,7,7,8,8,8,9,10,
所以中位数
=
=4.2
故答案为:7,7.5,4.2.
(2)由表中数据可知,甲、乙平均成绩相等,乙的中位数7.5大于甲的中位数7,说明乙的成绩好于甲,
故答案为:乙;
(3)选择乙参加比赛,理由:
从平均数上看,甲、乙平均成绩相等,总分相等,
从中位数上看乙的中位数和众数都大于甲,说明乙的成绩好于甲,
从方差上看乙的方差大于甲只说明乙的成绩没有甲稳定,
从众数看乙的众数是8,甲的众数是7,说明乙成绩要好些,
从折线图看,乙开始时发挥不好,后来乙的成绩呈上升趋势,
故应选乙队员参赛.
【点睛】
本题考查条形统计数,折线统计图,统计表获取信息以及处理信息,中位数,平均数,方差,利用集中趋势的量与离散程度的量进行决策是解题关键.
成绩(分)
46
47
48
49
50
人数(人)
1
2
3
2
2
抽检件数
10
40
100
200
300
500
不合格件数
0
1
2
3
6
10
射击成绩(环)
6
7
8
9
10
人数(人)
1
2
4
2
1
甲
乙
丙
丁
25
25
24
21
s2
2.2
2.0
2.1
2.0
次数
1
2
3
4
5
6
人数
1
2
a
6
b
2
平均成绩
中位数
众数
方差
甲
a
7
7
1.2
乙
7
b
8
c
相关试卷
这是一份数学八年级下册第十七章 方差与频数分布综合与测试同步达标检测题,共23页。试卷主要包含了一组数据1等内容,欢迎下载使用。
这是一份数学八年级下册第十七章 方差与频数分布综合与测试一课一练,共21页。
这是一份数学北京课改版第十七章 方差与频数分布综合与测试当堂达标检测题,共22页。试卷主要包含了新型冠状病毒肺炎等内容,欢迎下载使用。