初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试综合训练题
展开这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试综合训练题,共21页。
京改版八年级数学下册第十七章方差与频数分布定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是( ).
A.100,55% B.100,80% C.75,55% D.75,80%
2、某养猪场对200头生猪的质量进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在82.5kg及以上的生猪有( )
A.20头 B.50头 C.140头 D.200头
3、在频数分布直方图中,下列说法正确的是( )
A.各小长方形的高等于相应各组的频率
B.各小长方形的面积等于相应各组的频数
C.某个小长方形面积最小,说明落在这个组内的数据最多
D.长方形个数等于各组频数的和
4、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为( )
A.11 B.10 C.9 D.8
5、用计算器计算方差时,要首先进入统计计算状态,需要按键( )
A. B.
C. D.
6、一个人做“抛硬币”的游戏,正面出现4次,反面出现了6次,正确说法为( )
A.出现正面的频率是4 B.出现反面的频率是6
C.出现反面的频率是60% D.出现正面的频数是40%
7、一组数据1,1,1,3,4,7,12,若加入一个整数,一定不会发生变化的统计量是( )
A.众数 B.平均数 C.中位数 D.方差
8、一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成( )组.
A.10 B.9 C.8 D.7
9、为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是( )
A.众数是 B.中位数是 C.平均数是 D.方差是
10、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S甲2=6,S乙2=24,S丙2=25.5,S丁2=36,则这四名学生的数学成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某学校有学生名,从中随意询问名,调查收看电视的情况,结果如下表:
每周收看电视的时间(小时) | |||||
人数 |
则全校每周收看电视不超过小时的人数约为________.
2、已知一组数据的方差S[(6﹣7)+(10﹣7)+(a﹣7)+(b﹣7)+(8﹣7)](a,b为常数),则a+b的值为_______.
3、小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是,,那么两人中射击成绩比较稳定的是_________.
4、随机从甲,乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为,,,则小麦长势比较整齐的试验田是__________.
5、已知一组数据a、b、c、d、e的方差为,则新的数据2a﹣1、2b﹣1、2c﹣1、2d﹣1、2e﹣1的方差是 ______.
三、解答题(5小题,每小题10分,共计50分)
1、为加强安全教育,某校开展了“预防水,珍爱生命”安全知识竞赛,现从七,八,九年级学生中随机抽取了50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行了整理和分析,部分信息如下:
a.参赛学生成绩频数分布直方图(数据分成五组:,,,,)如图所示;
b.参赛学生成绩在这一组的具体得分是:70,71,73,75,76,76,76,77,77,78,79.
c.参赛学生成绩的平均数、中位数、众数如下:
平均数 | 中位数 | 众数 |
76.9 | m | 80 |
d.参赛学生甲的竞赛成绩得分为79分.
根据以上信息,回答下列问题:
(1)在这次竞赛中,成绩在75分以上的有______人;
(2)表中m的值为______.
(3)该校学生共有1500人,假设全部参加此次竞赛,请估计成绩超过平均数76.9分的人数.
2、 “足球运球”是中考体育选考项目之一.某学校为了解今年九年级学生足球运球的情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(4)该校九年级有500名学生,请估计足球运球测试成绩达到A级的学生有多少人?
3、某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查 名学生;
(2)补全条形统计图;
(3)若该校共有1500名学生,估计爱好运动的学生有多少人?
4、为了培养学生的数学学习兴趣,现从学校八、九年级中各抽取10名学生的数学竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:
),下面给出了部分信息:
八年级抽取的10名学生的竞赛成绩是:;
九年级抽取的10名学生的竞赛成绩是:;
八、九年级抽取的学生竞赛成绩统计表
年级 | 平均分 | 中位数 | 众数 | 方差 |
八年级 | 91 | 89.5 | n | 45.2 |
九年级 | 91 | m | 93 | 39.2 |
请根据相关信思,回答以下问题;
(1)直接写出表格中m,n的值并补全九年级抽取的学生数学竞赛成绩频数分布直方图;
(2)根据以上数据,你认为该校八、九年级中哪个年级学生数学竞赛成绩较好?请说明理由(一条由即可);
(3)该校八年级有600人,九年级有800人参加了此次竞赛活动,请估计参加此次竞赛活动成绩优秀的学生人数是多少.
5、某县教育局组织了一次经典诵读比赛,中学组有两队各10人的比赛成绩如下表:
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队的平均成绩;
(3)如果要从两个队中选择一对参加市级比赛,你认为安排哪个队更容易获奖.
-参考答案-
一、单选题
1、B
【分析】
根据频率分布直方图的意义,从左到右各个小组的频率之和是1,结合题意,可得第五小组的频率,进而根据同时每小组的频率=小组的频数:总人数可得此次统计的样本容量;又因为合格成绩为20,可得本次测试的合格率,即答案.
【详解】
解:由频率的意义可知,从左到右各个小组的频率之和是1,从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,
∴第五小组的频率是,
∴此次统计的样本容量是.
∵合格成绩为20,
∴本次测试的合格率是.
故选B.
【点睛】
本题属于统计内容,考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.
2、B
【分析】
在横轴找到82.5kg的位置,由图可知在80与85的中间,即第三个与第三个长方形的前一个边界值开始算起,将后2组频数相加,即可求解.
【详解】
依题意,质量在82.5kg及以上的生猪有:(头)
故选B.
【点睛】
本题考查了频数直方图的应用,根据频数直方图获取信息是解题的关键.
3、B
【分析】
根据频数直方图的定义逐一判断即可得答案.
【详解】
在频数分布直方图中,各小长方形的高等于频数与组距的比值,故A选项错误,
在频数分布直方图中,各小长方形的面积等于相应各组的频数,故B选项正确,
在频数分布直方图中,某个小长方形面积最小,说明落在这个组内的数据最少,故C选项错误,
在频数分布直方图中,各组频数的和等于各小长方形的高的和,故D选项错误,
故选:B.
【点睛】
本题考查频数直方图,准确理解频数直方图中几个等量关系是解题关键.
4、B
【分析】
极差除以组距,大于或等于该值的最小整数即为组数.
【详解】
解:,
分10组.
故选:B.
【点睛】
本题考查了组距的划分,一般分为组最科学.
5、B
【分析】
由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.
【详解】
解:用计算器求方差的一般步骤是:
①使计算器进入MODE 2状态;
②依次输入各数据;
③按求的功能键,即可得出结果.
故选:B.
【点睛】
本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.
6、C
【分析】
根据频率的计算方法判断各个选项.
【详解】
解:A、应为:出现正面的频数是4,错误,不符合题意;
B、应为:出现反面的频数是6,错误,不符合题意;
C、正确,符合题意;
D、出现正面的频率是40%,错误,不符合题意.
故选:C.
【点睛】
本题考查了频率以及频数的概念,熟知频率的计算方法是解本题的关键.
7、A
【分析】
依据平均数、中位数、众数、方差的定义即可得到结论.
【详解】
解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;
B、原来数据的平均数是,加入一个整数a,平均数一定变化,不符合题意;
C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意;
D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;
故选:A.
【点睛】
本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键.
8、A
【分析】
求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.
【详解】
解:145-50=95,
95÷10=9.5,
所以应该分成10组.
故选A.
【点睛】
本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.
9、D
【分析】
根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可
【详解】
根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7
其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意;
这组数据的中位数为:6,故B选项正确,不符合题意;
这组数据的平均数为,故C选项正确,不符合题意;
这组数据的方差为:,故D选项不正确,符合题意.
故选D.
【点睛】
本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:.
10、A
【分析】
根据方差的意义求解即可.
【详解】
解:∵S甲2=6,S乙2=24,S丙2=25.5,S丁2=36,
∴S甲2<S乙2<S丙2<S丁2,
∴这四名学生的数学成绩最稳定的是甲,
故选:A.
【点睛】
本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.掌握方差的意义是解题的关键.
二、填空题
1、1400
【分析】
由样本情况估计总体情况时,用总体人数乘以所求部分占样本的百分比即可.
【详解】
样本频率为.
∴全校每周收看电视不超过小时的人数约为.
故答案为:1400.
【点睛】
本题考查由样本数据估算总体数据,掌握基本计算方法是关键.
2、11
【分析】
根据方差及平均数的定义解答.
【详解】
解:由题意得,
∴,
故答案为:11.
【点睛】
此题考查方差的定义,平均数的计算公式,熟记方差的定义是解题的关键.
3、小刘
【分析】
根据方差的意义即可求出答案.
【详解】
解:由于S小刘2<S小李2,且两人10次射击成绩的平均值相等,
∴两人中射击成绩比较稳定的是小刘,
故答案为:小刘
【点睛】
本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,熟练运用方差的意义是解题的关键.
4、乙
【分析】
方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪块试验田即可.
【详解】
解:∵,,
∴,
∵3.8<4,
∴S乙2<S甲2,
∴小麦长势比较整齐的试验田是乙试验田.
故答案为:乙.
【点睛】
本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.
5、
【分析】
根据方差的变化规律即可得出答案,即当数据都减去一个数时,方差不变,当乘以一个数时,方差变成这个数的平方倍.
【详解】
解:∵数据a、b、c、d、e的方差是1.2,
∴数据2a−1、2b−1、2c−1、2d−1、2e−1的方差是22×1.2=4.8.
故答案为:4.8.
【点睛】
本题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当乘以一个数时,方差变成这个数的平方倍.
三、解答题
1、(1)30;(2)77.5;(3)810
【分析】
(1)参赛学生成绩频数分布直方图,可得75分以上的有 人,即可求解;
(2)根据题意可得位于第25位,第26位的分别为77、78,即可求解;
(3)用1500乘以成绩超过平均数76.9分的人数所占的百分比,即可求解.
【详解】
(1)在这次竞赛中,成绩在75分以上的有 人;
(2)∵位于第25位,第26位的分别为77、78,
∴中位数为 ,
即表中m的值为77.5;
(3)该校学生共有1500人,假设全部参加此次竞赛,请估计成绩超过平均数76.9分的人数:(人),
答:估计成绩超过平均数76.9分的人数是810人.
【点睛】
本题主要考查了频数分布直方图,求中位数,用样本估计总体,明确题意,能从频数分布直方图获取准确信息是解题的关键.
2、(1);(2)见解析;(3)B;(4)50.
【分析】
(1)首先根据B等级的人数和所占的百分比求出总人数,然后求出C等级的人数和所占的百分比,进而可求出C对应的扇形的圆心角的度数;
(2)根据(1)中求出的C等级的人数补全条形统计图即可;
(3)把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,根据题意求解即可;
(4)根据样本中A等级的人数和总人数可求出所占的百分比,即可求出九年级500名学生中A等级的学生人数.
【详解】
解:(1)∵B等级的人数是18,所占的百分比是,
∴总人数为(人),
∴C等级的人数为(人),
∴C等级的人数所占的百分比为,
∴C对应的扇形的圆心角是;
(2)由(1)可得,C等级的人数为13(人),
∴如图所示,
(3)由(1)可得,共有40名学生,
∴中位数为第20位学生和第21位学生成绩的平均数,
∵A等级有4人,B等级有18人,
∴第20位学生和第21位学生成绩都在B等级,
∴所抽取学生的足球运球测试成绩的中位数会落在B等级,
故答案是:B;
(4)∵A等级的学生有4人,总人数有40人,
∴A等级的人数所占的百分比为,
∴九年级500名学生中A等级的学生人数为(人).
【点睛】
此题考查了条形统计图和扇形统计图的综合运用,正确分析统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图能直接反映部分占总体的百分比大小.
3、(1)100;(2)见解析;(3)600
【分析】
(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;
(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形;
(3)利用样本估计总体即可估计爱好运动的学生人数.
【详解】
解:(1)爱好运动的人数为,所占百分比为
共调查人数为:,
故答案为:;
爱好上网的人数所占百分比为
爱好上网人数为:,
爱好阅读人数为:,
补全条形统计图,如图所示,
(3)爱好运动的学生人数所占的百分比为,
估计爱好运用的学生人数为:,
故答案为:;
【点睛】
本题考查统计的基本知识,样本估计总体,解题的关键是正确利用两幅统计图的信息.
4、(1)n=89,m=92.5,补图见解析;(2)九年级学生掌握防火安全知识较好,理由见解析;(3)840人
【分析】
(1)直接根据八年级抽取的10名学生的竞赛成绩可得其众数n的值,将九年级抽取的I0名学生的竞赛成绩重新排列,利用中位数的概念可得m的值,继而补全频数分布直方图可得答案;
(2)在平均成绩相等的前提下可比较中位数、众数或方差,合理即可得;
(3)用总人数乘以样本中成绩不低于90分人数占被调查人数的比例即可得.
【详解】
解:(1)由题意知八年级抽取的10名学生的竞赛成绩的众数n=89,
将九年级抽取的10名学生的竞赛成绩重新排列为80,83,85,90,92,93,93,95,99,100,
∴其中位数m= =92.5,
补全频数分布直方图如下:
(2)九年级学生掌握防火安全知识较好,理由如下:
∵八、九年级参加竞赛的10名学生的平均成绩相等,但九年级10名学生成绩的方差小,
∴九年级参加竞赛的10名学生的成绩更加稳定,
∴九年级学生掌握防火安全知识较好.
(3)估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是(600+800)×=840(人).
【点睛】
本题考查频数分布直方图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
5、(1)9.5,10;(2)9;(3)甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,所以乙队的成绩更加稳定,选择乙
【分析】
(1)先将甲队的成绩按从小到大的顺序排列,可得位于第5位和第6位的分别为9和10 ,可得甲队成绩的中位数是9.5分,再由乙队成绩中10出现的次数最多,可得乙队成绩的众数是10分;
(2)利用乙队成绩的总和除以10,即可求解;
(3)分别两队的平均成绩和方差,即可求解.
【详解】
解:(1)将甲队的成绩按从小到大的顺序排列为:7、7、8、9、9、10、10、10、10、10,位于第5位和第6位的分别为9和10 ,
∴甲队成绩的中位数是 分,
∵乙队成绩中10出现了4次,出现的次数最多,
∴乙队成绩的众数是10分;
(2)乙队的平均成绩为 分;
(3)甲队的平均成绩为 分,
甲队成绩的方差为
乙队成绩的方差为,
∴甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,
∴乙队的成绩更加稳定,选择乙.
【点睛】
本题主要考查了求一组数据的中位数,众数,平均数,利用方差做决策,熟练掌握一组数据中位于正中间的一个数或两个数的平均数是中位数;出现次数最多的数是众数;平均数等于数据的总和除以个数;方差越小,越稳定是解题的关键.
相关试卷
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题,共19页。试卷主要包含了已知一组数据的方差s2=[等内容,欢迎下载使用。
这是一份数学北京课改版第十七章 方差与频数分布综合与测试当堂达标检测题,共22页。试卷主要包含了新型冠状病毒肺炎等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后复习题,共21页。试卷主要包含了2020年某果园随机从甲等内容,欢迎下载使用。

