初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步达标检测题
展开这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步达标检测题,共20页。试卷主要包含了数学老师将本班学生的身高数据,下列一组数据等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个人做“抛硬币”的游戏,正面出现4次,反面出现了6次,正确说法为( )
A.出现正面的频率是4 B.出现反面的频率是6
C.出现反面的频率是60% D.出现正面的频数是40%
2、甲、乙两人各射击5次,成绩如表.根据数据分析,在两人的这5次成绩中( )
| 成绩(单位:环) | ||||
甲 | 3 | 7 | 8 | 8 | 10 |
乙 | 7 | 7 | 8 | 9 | 10 |
A.甲的平均数大于乙的平均数
B.甲的中位数小于乙的中位数
C.甲的众数大于乙的众数
D.甲的方差小于乙的方差
3、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )
A.甲比乙稳定 B.乙比甲稳定
C.甲与乙一样稳定 D.无法确定
4、2021年正值中国共产党建党100周年之际,某校开展“致敬建党百年,传承红色基因”党史知识竞赛活动.八年级甲、乙、丙、丁四个小组的同学分别参加了年级预赛,四个小组的平均分相同,若要从中选择出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( )
| 甲 | 乙 | 丙 | 丁 |
方差 | 3.6 | 3.2 | 4 | 4.3 |
A.甲组 B.乙组 C.丙组 D.丁组
5、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是( )
A.该班共有学生60人
B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内
C.某同学身高155厘米,那么班上恰有10人比他矮
D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%
6、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为( )
A.3和2 B.4和3 C.5和2 D.6 和2
7、下列一组数据:-2、-1、0、1、2的平均数和方差分别是( )
A.0和2 B.0和 C.0和1 D.0和0
8、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )
A.平均数、中位数和众数都是3
B.极差为4
C.方差是
D.标准差是
9、数字“20211202”中,数字“2”出现的频数是( )
A.1 B.2 C.3 D.4
10、某厂质检部将甲,乙两人第一周每天生产合格产品的个数整理成两组数据,如表:根据数据表,说法正确的是( )
甲 | 2 | 6 | 7 | 7 | 8 |
乙 | 2 | 3 | 4 | 8 | 8 |
A.甲、乙的众数相同 B.甲、乙的中位数相同
C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是,,那么两人中射击成绩比较稳定的是_________.
2、某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:
班级 | 参加人数 | 平均字数 | 中位数 | 方差 |
甲 | 55 | 135 | 149 | 191 |
乙 | 55 | 135 | 151 | 110 |
有一位同学根据上面表格得出如下结论:
①甲、乙两班学生的平均水平相同;
②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);
③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.
上述结论正确的是___________(填序号).
3、下表中记录了甲、乙两名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名运动员参加决赛,最合适的运动员是______.
| 甲 | 乙 |
平均数 | 368 | 320 |
方差 | 2.5 | 5.6 |
4、已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为_____.
5、小明想知道一碗芝麻有多少粒,于是就从中取出粒涂上黑色,然后放入碗中充分搅拌后再随意取出粒,其中有粒是黑色芝麻,因此可以估算这碗芝麻有________粒.
三、解答题(5小题,每小题10分,共计50分)
1、某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)
甲组成绩统计表:
成绩 | 7 | 8 | 9 | 10 |
人数 | 1 | 9 | 5 | 5 |
乙组成绩统计图
根据上面的信息,解答下列问题:
(1)甲组的平均成绩为______分,______,甲组成绩的中位数是______,乙组成绩的众数是______;
(2)若已经计算出甲组成绩方差为0.81,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定?
2、甲、乙两名队员参加射击训练,将10次成绩分别制成如图所示的两个统计图:
(1)根据以上信息,整理分析数据如表:
| 平均成绩(环) | 众数(环) | 中位数 | 方差 |
甲 | 7 | a | 7 | c |
乙 | 7 | 8 | b | 4.2 |
填空:a= ,b= ,c= ;
(2)根据以上数据分析,请你运用所学统计知识,任选两个角度评价甲、乙两名队员哪位队员的射击成绩更好.
3、为提升学生的艺术素养,学校计划开设四门艺术选修课:A:书法;B,绘画;C,乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),将数据进行整理,并绘制成如图两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)木次调查的学生共有 人,扇形统计图中∠α的度数是 ;
(2)请把条形统计图补充完整.
4、某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:
(1)在这次问卷调查中,一共抽查了多少名学生;
(2)请将统计图②补充完整;
(3)如果全校有3600名学生,请问全校学生中,最喜欢“踢毽”活动的学生约有多少人.
5、为庆祝五四青年节,学校计划在“五四”前夕举行班级歌咏比赛,要确定一首喜欢唱的人数最多的歌曲为每班必唱歌曲.为此提供代号为四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制成如下的两幅不完整的统计图.请根据图1,图2所提供的信息,解答下列问题:
(1)本次抽样调查的学生有多少名?
(2)请将条形统计图补充完整;
(3)求扇形图中的圆心角度数;
(4)由统计图发现喜欢唱的人数最多的歌曲为哪一首?若全校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生喜欢唱此歌曲?
-参考答案-
一、单选题
1、C
【分析】
根据频率的计算方法判断各个选项.
【详解】
解:A、应为:出现正面的频数是4,错误,不符合题意;
B、应为:出现反面的频数是6,错误,不符合题意;
C、正确,符合题意;
D、出现正面的频率是40%,错误,不符合题意.
故选:C.
【点睛】
本题考查了频率以及频数的概念,熟知频率的计算方法是解本题的关键.
2、C
【分析】
根据题意求出众数,中位数,平均数和方差,然后进行判断即可.
【详解】
解:A、甲的成绩的平均数=(3+7+8+8+10)=7.2(环),乙的成绩的平均数=(7+7+8+9+10)=8.2(环),所以A选项说法错误,不符合题意;
B、甲的成绩的中位数为8环.乙的成绩的中位数为8环,所以B选项说法错误,不符合题意;
C、甲的成绩的众数为8环,乙的成绩的众数为7环;所以C选项说法正确,符合题意;
D、,,所以D选项说法错误,不符合题意.
故选C.
【点睛】
本题主要考查了平均数,众数,中位数和方差,解题的关键在于能够熟练掌握相关知识进行求解.
3、C
【分析】
先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.
【详解】
解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,
乙5天制作的个数分别为10、15、10、20、15,
∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,
∴甲、乙制作的个数稳定性一样,
故选:C.
【点睛】
本题主要考查了利用方差进行决策,准确分析判断是解题的关键.
4、B
【分析】
由平均数相同,根据方差越小越稳定可得出结论.
【详解】
解:∵4.3>4>3.6>3.2
∴,
∵四个小组的平均分相同,
∴乙组各成员实力更平均,
选择乙组代表年级参加学校决赛.
故选择B.
【点睛】
本题考查平均数与方差,利用方差进行决策,掌握方差的意义是解题关键.
5、B
【分析】
由两幅统计图的数据逐项计算判断即可.
【详解】
解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;
根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;
根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,,故D正确,不符合题意;
根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;
故选B.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
6、D
【分析】
先根据平均数定义求出x,再根据方差公式计算即可求解.
【详解】
解:由题意得,
解得x=6,
∴这组数据的方差是.
故选:D
【点睛】
本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.
7、A
【分析】
根据平均数公式与方差公式计算即可.
【详解】
解:,
.
故选择A.
【点睛】
本题考查平均数与方差,掌握平均数与方差公式是解题关键.
8、D
【分析】
分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.
【详解】
解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;
极差为5﹣1=4,B选项不符合题意;
S2=×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,C选项不符合题意;
S=,因此D选项符合题意,
故选:D.
【点睛】
考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.
9、D
【分析】
根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可.
【详解】
解:数字“20211202”中,共有4个“2”,
∴数字“2”出现的频数为4,
故选:D.
【点睛】
题目主要考查频数的定义,理解频数的定义是解题关键.
10、D
【分析】
根据出现次数最多找到众数,再判断A即可;将数据按顺序排列,找到居于中间位置的数即为中位数,再判断B即可;分别计算出平均数及方差,再判断C、D即可.
【详解】
解:A.甲的众数为7,乙的众数为8,故此项错误;
B.甲的中位数为7,乙的中位数为4,故此项错误;
C.甲的平均数为,乙的平均数为,甲的平均数>乙的平均数, 故此项错误;
D.甲的方差为,乙的方差为,甲的方差小于乙的方差,故此项正确;
故选:D.
【点睛】
此题主要考查了众数、中位数、方差和平均数,关键是掌握众数、中位数、平均数及方差的概念和方差公式.
二、填空题
1、小刘
【分析】
根据方差的意义即可求出答案.
【详解】
解:由于S小刘2<S小李2,且两人10次射击成绩的平均值相等,
∴两人中射击成绩比较稳定的是小刘,
故答案为:小刘
【点睛】
本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,熟练运用方差的意义是解题的关键.
2、①②③
【分析】
根据中位数,平均数和方差的意义,逐一判断即可.
【详解】
解:由于乙班学生每分钟输入汉字的中位数为151,说明有一半以上的学生都达到每分钟150个及以上,而甲班学生的中位数为149,说明不到一半的学生达到150个及以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确.
故答案是:①②③.
【点睛】
本题主要考查中位数,平均数和方差,掌握中位数和方差的意义,是解题的关键.
3、甲
【分析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】
解:∵甲的平均数比乙的平均数大,
甲的方差小于乙的方差,
∴最合适的运动员是甲.
故答案为:甲.
【点睛】
此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
4、
【分析】
先由平均数是5计算的值,再根据方差的计算公式,直接计算可得.
【详解】
解:一组数据7,2,5,,8的平均数是5,
,
,
,
故答案为:.
【点睛】
本题考查的是算术平均数和方差的计算,解题的关键是掌握方差的计算公式:一般地设个数据,,,的平均数为,则方差.
5、2000
【分析】
设碗中有芝麻粒,根据取出100粒刚好有记号的5粒列出算式,再进行计算即可.
【详解】
解:设碗中有芝麻粒,根据题意得:
,
解得:.
故答案为:2000.
【点睛】
本题考查了用样本的数据特征来估计总体的数据特征,解题的关键是掌握利用样本中的数据对整体进行估算.
三、解答题
1、(1)8.7,3,8.5,8;(2)乙组成绩的方差为0.75,乙组的成绩更加稳定.
【分析】
(1)根据数据平均数的计算方法可得平均数;用总人数减去其他成绩的人数即为m的值;根据中位数(一组数据从小到大排序后最中间的数)和众数(一组数据中出现次数最多的)的定义即可确定甲组成绩的中位数,乙组成绩的众数;
(2)先求出乙组数据的平均数,再根据方差公式求出乙组方差,然后进行比较,即可得出答案.
【详解】
解:(1)平均成绩为:,
,
甲组成绩一共有20人,从小到大最中间为8和9,则中位数为,
乙组成绩中出现次数最多的为8,则众数为8,
故答案为:8.7,3,8.5,8;
(2),
,
,
∴,
∴乙组的成绩更加稳定.
【点睛】
题目主要考查平均数、中位数、众数的定义、方差的算法及数据的稳定性判断,理解定义及方差的算法是解题关键.
2、(1),,;(2)答案见解析.
【分析】
(1)分别根据平均数,方差,中位数的定义求解即可;
(2)从众数与中位数的角度分析,乙的射击成绩都比甲要高,从而可得结论.
【详解】
解:(1)由频数直方图可得:甲的成绩如下:
其中环出现了4次,所以众数是环,
环
由折线统计图可得:按从小到大排序为:
所以中位数为:.
故答案为:,,;
(2)从众数与中位数来看,乙的众数与中位数都比甲高,所以乙的射击成绩比甲的射击成绩要好一些.
【点睛】
本题考查的是平均数,众数,中位数,方差的含义,根据平均数,众数,中位数,方差下结论,掌握以上基础概念是解本题的关键.
3、(1);(2)画图见解析
【分析】
(1)由B组8人,占比20%,列式可得总人数,由C组的占比乘以可得圆心角的度数;
(2)先计算出C组的人数,再补全图形即可.
【详解】
解:(1)由B组8人,占比20%,可得总人数为:人,
所以C组所在扇形的圆心角为:
故答案为:
(2)C组的人数为:人,
补全图形如下:
【点睛】
本题考查的是从扇形图与条形图中获取信息,频数与频率,画条形统计图,计算扇形某部分的圆心角,掌握以上基础知识是解题的关键.
4、(1)200人;(2)见解析;(3)人
【分析】
(1)根据喜欢“球类”的人数以及百分比,求解即可;
(2)根据总人数,求得跳绳的人数,补全统计图即可;
(3)求得“踢毽”活动的百分比,即可求解;
【详解】
解:(1)从统计图中可以得到喜欢“球类”的人数为80人,所占百分比为,
则总人数为人,
故答案为200人
(2)喜欢“跳绳”的人数有人,补全统计图,如下:
(3)最喜欢“踢毽”活动的学生约为人,
故答案为人
【点睛】
此题考查了统计的基本知识,涉及了计算样本容量,统计图以及根据样本估算总体,解题的关键是读懂统计图,从统计图中获取有关数据.
5、(1)本次抽样调查的学生有180人;(2)见解析;(3)72°;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.
【分析】
(1)用曲目D的人数除以其占比即可得到答案;
(2)根据(1)所求,先算出曲目C的人数,然后补全统计图即可;
(3)用360度乘以曲目A的人数占比即可得到答案;
(4)根据统计图可知喜欢曲目C的人数最多,然后用全校人数乘以样本中曲目C的占比即可得到答案.
【详解】
解:(1)由题意得:总人数人,
答:本次抽样调查的学生有180人;
(2)由(1)得喜欢曲目C的人数人,
∴补全条形统计图如下所示:
(3)由题意得扇形图中A的圆心角度数;
(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有人,
答:由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.
【点睛】
本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,补全统计图,求扇形圆心角度数等等,读懂统计图是解题的关键.
相关试卷
这是一份2021学年第十七章 方差与频数分布综合与测试课时练习,共19页。
这是一份初中北京课改版第十七章 方差与频数分布综合与测试课后测评,共21页。试卷主要包含了在一次投篮训练中,甲等内容,欢迎下载使用。
这是一份初中数学第十七章 方差与频数分布综合与测试复习练习题,共19页。试卷主要包含了一组数据,一组数据a-1等内容,欢迎下载使用。