初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试复习练习题
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试复习练习题,共16页。试卷主要包含了方程(x-1)2 = 0的根是,股市规定等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个矩形的长是宽的3倍,若把它的长、宽分别加1后,面积增加了9,求原矩形的长与宽.若设原矩形的宽为,可列方程为( )A. B. C. D.2、若x=﹣1是关于x的一元二次方程ax2+bx﹣2=0(a≠0)的一个根,则2021﹣2a+2b的值等于( )A.2015 B.2017 C.2019 D.20223、在等式①;②;③;⑤;⑤中,符合一元二次方程概念的是( )A.①⑤ B.① C.④ D.①④4、方程(x-1)2 = 0的根是( )A.x = - 1 B.x1 = x2 = 1 C.x1 =x2= - 1 D.x1 = 1,x2 = -15、若关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是( )A.a≥﹣且a≠0 B.a≤﹣ C.a≥﹣ D.a≤﹣且a≠06、已知m,n是方程的两根,则代数式的值等于( )A.0 B. C.9 D.117、方程2x2-3x=2的一次项系数和常数项分别是( )A.3和2 B.-3和2 C.3和-2 D.-3和-28、已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是( )A.5 B.3 C.-3 D.-49、股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x满足的方程是( )A. B.C. D.10、将一元二次方程通过配方转化为的形式,下列结果中正确的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、现规定一种新的运算:,当时,则的值为____.2、随着网络购物的兴起,增加了快递公司的业务量,一家今年刚成立的小型快递公司业务量逐月攀升,今年9月份和11月份完成投送的快递件数分别是20万件和24.2万件,若该公司每月投送的快递件数的平均增长是x,由题意列出关于x的方程:______.3、若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,那么m=_____.4、若关于x的一元二次方程有两个实数根,则m 的取值范围是______________.5、小华在解方程x2 = 3x时,只得出一个根x = 3,则被他漏掉的一个根是x =_______ 三、解答题(5小题,每小题10分,共计50分)1、解方程:.2、用合适的方法解下列方程:(1)x2﹣4x﹣5=0;(2)2x2﹣6x﹣3=0;(3)(2x﹣3)2=5(2x﹣3);(4).3、解方程:4、如图,在∆ABC中,∠B=90°,AB=5cm,BC=7cm.动点P、Q分别从点A,B同时出发,点P以1cm/s的速度向点B移动,点Q以2cm/s的速度向点C移动.(不考虑起始位置,且点P,Q不与点A,B重合)(1)P、Q两点出发后第几秒时,∆PBQ的面积为4cm2?(2)P、Q两点出发后第几秒时,PQ的长度为5cm;(3)∆PBQ的面积能否为7cm2?说明理由.5、解方程:(1)(2) -参考答案-一、单选题1、C【分析】分别用表示出长宽增加前后的矩形面积,然后作差即可得到所求方程.【详解】解:由题意可知,长宽增加前的矩形面积为:,长宽增加后的矩形面积为:,根据已知条件可得方程:,故选:C.【点睛】本题主要是考查了一元二次方程的实际应用,熟练利用表示出对应图形的面积,这是解决与面积相关的应用题的关键.2、B【分析】根据一元二次方程根的定义将代入方程ax2+bx﹣2=0可得,即,整体代入到代数式中求解即可,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.【详解】解:将代入方程ax2+bx﹣2=0可得,即2021﹣2a+2b=故选B【点睛】本题考查了一元二次方程的解,代数式求值,整体代入是解题的关键.3、B【分析】根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐个分析判断即可.【详解】解:①,是一元二次方程,符合题意;②,不是方程,不符合题意;③,不是整式方程,不符合题意;⑤,是二元一次方程,不符合题意;⑤,是一元一次方程,不符合题意故符合一元二次方程概念的是①故选B【点睛】本题考查了一元二次方程定义,掌握一元二次方程定义是解题的关键.4、B【分析】根据直接开平方法可进行求解一元二次方程.【详解】解:,∴;故选B.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.5、A【分析】根据一元二次方程的定义和一元二次方程根的判别式求解即可.【详解】解:∵关于x的一元二次方程ax2+x﹣1=0有实数根,∴,解得:且.故选A.【点睛】本题主要考查一元二次方程根的判别式和一元二次方程的定义,熟练掌握根的判别式和一元二次方程的定义是解题的关键.6、C【分析】利用方程的解的定义和一元二次方程根与系数的关系,可得, ,从而得到,再代入,即可求解.【详解】解:∵m,n是方程的两根,∴, ,∴,∴.故选:C【点睛】本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若,是一元二次方程 的两个实数根,则,是解题的关键.7、D【分析】先将方程变形,再根据一元二次方程方程的一般形式“一元二次方程的一般形式是,其中是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项”进行解答即可得.【详解】解:一次项系数为:-3,常数项为:-2,故选D.【点睛】本题考查了一元二次方程的一次项系数和常数项,解题的关键是熟记一元二次方程的一般形式.8、A【分析】根据一元二次方程根与系数的关系先求出m+n和mn的值,然后代入计算即可.【详解】解:∵一元二次方程的两根分别为m,n,∴,,∴,故选:A.【点睛】本题考查一元二次方程根与系数的关系,对于一元二次方程,若其两根分别为和,则其两个根满足,,掌握此定理是解题关键.9、A【分析】股票的一次涨停便涨到原来价格的110%,再从110%跌到原来的价格,且跌幅小于等于10%,这样经过两天的下跌才跌到原来价格,x表示每天下跌的百分率,从而有110%•(1-x)2=1,这样便可找出正确选项.【详解】设x为平均每天下跌的百分率,
则:(1+10%)•(1-x)2=1;
故选:A.【点睛】考查对股票的涨停和跌停概念的理解,知道股票下跌x后,变成原来价格的(1-x)倍.10、A【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可.【详解】解:∵,∴,∴,即,故选A.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.二、填空题1、2或3或2【分析】根据新定义运算把原式转化成一元二次方程,解方程即可.【详解】解:由可得,;,,,解得,;故答案为:2或3.【点睛】本题考查了新定义运算和解一元二次方程,解题关键是根据题意把原式转化为一元二次方程.2、【分析】根据题意,该公司每月投送的快递件数的平均增长是x,则10月份完成投送的快递件数为万件,则11月份完成投送的快递件数为万件,根据11月份完成投送的快递件数为24.2万件,列出一元二次方程即可【详解】解:设该公司每月投送的快递件数的平均增长是x,根据题意得故答案为:【点睛】本题考查了一元二次方程的应用,根据等量关系列出一元二次方程是解题的关键.3、1【分析】由题意根据判别式的意义得到Δ=(﹣2)2﹣4×1×m=0,然后求解关于m的方程即可.【详解】解:根据题意得Δ=(﹣2)2﹣4×1×m=0,解得m=1.故答案为:1.【点睛】本题考查根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.4、【分析】根据一元二次方程 (为常数)的根的判别式,解不等式即可求得m 的取值范围【详解】解:关于x的一元二次方程有两个实数根,=解得故答案为:【点睛】本题考查了一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.5、0【分析】根据因式分解法即可求出答案.【详解】解:∵x2=3x,
∴x2-3x=0,
∴,
∴x=0或x-3=0,
∴x1=0,x2=3,
故答案为:0.【点睛】本题考查解一元二次方程,解题的关键是熟练运用因式分解法.三、解答题1、,【分析】确定,,,采用求根公式法解答即可.【详解】∵,∴,,,△,则,,.【点睛】本题考查了一元二次方程的解法,熟练掌握求根公式是解题的关键.2、(1);(2);(3);(4).【分析】(1)方程利用因式分解法求出解即可;(2)方程利用公式法求出解即可;(3)方程变形后,利用因式分解法求出解即可;(4)方程利用公式法求出解即可.【详解】解:(1)方程x2﹣4x﹣5=0,
分解因式得:(x-5)(x+1)=0,
所以x-5=0或x+1=0,
解得:x1=5,x2=-1;(2)方程2x2﹣6x﹣3=0,a=2,b=-6,c=-3,∵△=b2-4ac=36+24=60>0,∴x==,∴;
(3)方程移项得:(2x-3)2-5(2x-3)=0,
分解因式得:(2x-3)(2x-3-5)=0,
所以2x-3=0或2x-8=0,
解得:;(4)a=1,b=,c=10,∵△=b2-4ac=48-40=8>0,∴x==,∴.【点睛】本题考查了解一元二次方程-因式分解法,以及公式法,熟练掌握各自的解法是解题的关键.3、 【分析】直接用公式法求解即可.【详解】∴∴,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4、(1)1秒后,△PBQ的面积等于4cm2;(2)2秒后,PQ的长度等于5cm;(3)△PBQ的面积不能等于7cm2.理由见解析【分析】(1)根据题意表示出BP、BQ的长,再根据三角形的面积公式列方程即可;(2)根据题意表示出BP、BQ的长,再根据勾股定理列方程即可;(3)根据三角形的面积公式,列出方程,再利用判别式,即可求解.【详解】解:根据题意,知BP=AB-AP=5-t,BQ=2t.(1)设t秒后,△PBQ的面积等于4cm2,根据三角形的面积公式,得PB•BQ=4,t(5-t)=4,t2-5t+4=0,解得t=1秒或t=4秒(舍去).故1秒后,△PBQ的面积等于4cm2;(2)设t秒后,PQ的长度等于5cm,根据勾股定理,得PQ2=BP2+BQ2=(5-t)2+(2t)2=25,5t2-10t=0,∵t≠0,∴t=2.故2秒后,PQ的长度等于5cm;(3)根据三角形的面积公式,得PB•BQ=7,t(5-t)=7,t2-5t+7=0,△=(-5)2-4×1×7=-3<0.故△PBQ的面积不能等于7cm2.【点睛】本题考查了一元二次方程的应用,此题要能够正确找到点所经过的路程,熟练运用勾股定理和直角三角形的面积公式列方程求解.5、(1)原方程无解;(2).【分析】(1)方程两边同乘以化成整式方程,再解一元一次方程即可得;(2)方程两边同乘以化成整式方程,再解一元二次方程即可得.【详解】解:(1),方程两边同乘以,得,移项、合并同类项,得,系数化为1,得,经检验,不是分式方程的解,所以原方程无解;(2),方程两边同乘以,得,移项、合并同类项,得,因式分解,得,解得或,经检验,不是分式方程的解;是分式方程的解,所以原方程的解为.【点睛】本题考查了解分式方程,熟练掌握方程的解法是解题关键.需注意的是,分式方程需进行检验.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后复习题,共18页。试卷主要包含了下列方程中是一元二次方程的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步达标检测题,共17页。试卷主要包含了一元二次方程的根的情况是等内容,欢迎下载使用。
这是一份数学八年级下册第十六章 一元二次方程综合与测试同步训练题,共17页。试卷主要包含了一元二次方程根的情况是等内容,欢迎下载使用。