八年级下册第十六章 一元二次方程综合与测试课时训练
展开
这是一份八年级下册第十六章 一元二次方程综合与测试课时训练,共16页。试卷主要包含了下列所给方程中,没有实数根的是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知是一元二次方程的一个根,则代数式的值为( )A.2020 B.2021 C.2022 D.20232、小亮、小明、小刚三名同学中,小亮的年龄比小明的年龄小2岁,小刚的年龄比小明的年龄大1岁,并且小亮与小刚的年龄的乘积是130.你知道这三名同学的年龄各是多少岁吗?设小明的年龄为x岁,则可列方程为( )A. B.C. D.3、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,则m-n的值是( )A.-10 B.10 C.-6 D.64、下列所给方程中,没有实数根的是( )A. B.C. D.5、解一元二次方程x2-6x-4=0,配方后正确的是( )A.(x+3)2=13 B.(x-3)2=5 C.(x-3)2=4 D.(x-3)2=136、为落实教育优先发展,南充市财政一般公共预算2019年教育经费投入93.15亿元,2021年教育经费投入99.45亿元,设南充市财政一般公共预算教育经费投入年平均增长率为x,则可列方程为( )A. B.C. D.7、将一元二次方程通过配方转化为的形式,下列结果中正确的是( )A. B. C. D.8、一元二次方程的一个根为,那么c的值为( ).A.9 B.3 C. D.9、已知一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,则一元二次方程ax2-bx+c=3的两根分别为( )A.x1=0,x2=-3 B.x1=-1,x2=-4C.x1=0,x2=3, D.x1=2,x2=-110、方程x2﹣x=0的解是( )A.x=0 B.x=1 C.x1=0,x2=﹣1 D.x1=0,x2=1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于x的方程mx2﹣2x+1=0有两个不相等的实数根,则m的取值范围是 _____.2、已知关于x的一元二次方程2x2﹣4x+k﹣=0有两个不相等的实数根,则k的取值范围是 _____.3、某班学生去参加义务劳动,其中一组到一果园去摘梨子, 第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,…以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为 _______4、若关于x的方程(k﹣1)x2+2kx+k=0有两个不相等的实数根,则实数k的取值范围是 _____.5、2021年10月10日,第七届黑龙江绿色食品产业博览会开幕,虎林市组建团队参加,为增进了解,在参加会议前团队每两个人间互送了一次名片,一共送出90张名片,则这个团队有_______人.三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)x2+4x﹣1=0 (2)x(x-2)+x-2=02、解方程:(1)2(x﹣1)2﹣16=0;(2)x2+5x+7=3x+11.3、已知函数y1=x+1和y2=x2+3x+c(c为常数).(1)若两个函数图像只有一个公共点,求c的值;(2)点A在函数y1的图像上,点B在函数y2的图像上,A,B两点的横坐标都为m.若A,B两点的距离为3,直接写出满足条件的m值的个数及其对应的c的取值范围.4、2021年某市轨道交通1号线经过10月份的试运营,于11月正式开通运营.10月份客运量为120万人次,12月份客运量为172.8万人次(1)求1号线客运量的月平均增长率;(2)按照客运量这样的月增长率,预计1号线在2022年1月份的客运量能否突破200万人次.5、解下列方程:(1);(2). -参考答案-一、单选题1、B【分析】把代入一元二次方程得到,再利用整体代入法解题即可.【详解】解:把代入一元二次方程得,,,故选:B.【点睛】本题考查一元二次方程的解、已知式子的值求代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.2、B【分析】设小明的年龄为x岁,则可用x表示出小亮的年龄和小刚的年龄.再根据小亮与小刚的年龄的乘积是130,即可列出方程.【详解】设小明的年龄为x岁,则小亮的年龄为岁,小刚的年龄为岁,根据题意即可列方程:.故选:B.【点睛】本题考查一元二次方程的实际应用.理解题意,正确找出题干中的数量关系列出等式是解答本题的关键.3、D【分析】根据一元二次方程x2+mx+n=0的两个实数根分别为x1=2、x2=4结合根与系数的关系,分别求出m和n的值,最后代入m-n即可解答.【详解】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2、x2=4,∴x1+x2=﹣m=-2+4,解得:m=﹣2,x1•x2=n=-2×4,解得:n=-8,∴m-n=﹣2-(-8)=6.故选D.【点睛】本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系求出m、n的值是解答本题的关键.4、D【分析】逐一求出四个选项中方程的根的判别式Δ的值,取其小于零的选项即可得出结论.【详解】解:A、∵Δ=(﹣2)2﹣4×1×0=4>0,∴一元二次方程有两个不相等的实数根; B、∵Δ=(﹣4)2﹣4×5×(-2)=56>0,∴一元二次方程有两个不相等的实数根;C、∵Δ=(﹣4)2﹣4×3×1=4>0,∴一元二次方程有两个不相等的实数根; D、∵Δ=(﹣3)2﹣4×4×2=-23<0,∴一元二次方程没有实数根.故选:D.【点睛】本题考查了一元二次方程根的判别式,牢记“当Δ<0时,一元二次方程没有实数根”是解题的关键.5、D【分析】根据配方法即可求出答案.【详解】解:∵x2﹣6x﹣4=0,∴x2﹣6x=4,∴x2﹣6x+9=13,∴(x﹣3)2=13,故选D.【点睛】本题考查了配方法解方程,注意配方时先把常数项移到右边,然后把二次项系数化为1,最后等号两面同时加上一次项系数一半的平方.6、A【分析】根据题意可直接进行求解.【详解】解:由题意可列方程为;故选A.【点睛】本题主要考查一元二次方程的应用,熟练掌握增长率问题是解题的关键.7、A【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可.【详解】解:∵,∴,∴,即,故选A.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.8、D【分析】把x=-3代入方程,然后解关于c的方程即可.【详解】解:把x=-3代入方程得9+c=0,所以c=-9.故选D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9、D【分析】首先根据a+b+c=3可得一元二次方程ax2+bx+c=3的一个根为,然后根据根与系数的关系可得,,然后代入一元二次方程ax2-bx+c=3中即可求解.【详解】解:∵一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,∴一元二次方程ax2+bx+c=3有一个根为1,∴一元二次方程ax2+bx+c=3化成一般形式为ax2+bx+c-3=0,∴,,∵ax2-bx+c=3化成一般形式为ax2-bx+c-3=0,即,∴,∴,∴或,解得:.故选:D.【点睛】此题考查了一元二次方程的解,因式分解法解一元二次方程,一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系.10、D【分析】因式分解后求解即可.【详解】x2﹣x=0,x(x-1)=0,x=0,或x-1=0,解得x1=0,x2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.二、填空题1、m<1且m≠0【分析】由二次项系数非零及根的判别式Δ>0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【详解】∵关于x的方程mx2﹣2x+1=0有两个不相等的实数根,∴,解得:m<1且m≠0.故答案为:m<1且m≠0.【点睛】本题考查了一元二次方程根的判别式,但要注意二次项系数非零.2、【分析】根据方程的系数结合根的判别式Δ>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】解:∵关于x的一元二次方程2x2﹣4x+k﹣=0有两个不相等的实数根,∴Δ=(﹣4)2﹣4×2×(k﹣)>0,解得:.故答案为:【点睛】本题考查了一元二次方程根的判别式,掌握一元二次方程根的判别式的符号对应的三种根的情况是解题的关键.(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.3、11【分析】设这组学生的人数为 人,根据题意列出方程,解出即可.【详解】解:设这组学生的人数为 人,根据题意得: ,即 解得: .故答案为:11【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.4、 且【分析】利用一元二次方程根的判别式,即可求解.【详解】解:∵关于x的方程(k﹣1)x2+2kx+k=0有两个不相等的实数根,∴且 ,解得: 且 .故答案为: 且【点睛】本题考查了一元二次方程的定义,一元二次方程根的判别式,熟练掌握二次函数 ,当 时,方程有两个不相等的实数根;当 时,方程有两个相等的实数根;当 时,方程没有实数根是解题的关键.5、10【分析】设这个团队有x人,根据“每两个人间互送了一次名片,一共送出90张名片,”列出方程求解即可.【详解】解:设这个团队有x人,则x(x-1)=90,解得:(舍),∴个团队有10,故答案为:10.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是根据题意列出方程.三、解答题1、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=2,x2=-1【分析】(1)利用公式法解方程即可;(2)利用因式分解法解方程即可.【详解】解:(1)∵x2+4x﹣1=0,∴a=1,b=4,c=﹣1,∵△=16+4=20,∴x=,∴,;(2)x(x-2)+x-2=0,因式分解得:(x﹣2)(x+1)=0,可得x﹣2=0或x+1=0,解得:x1=2,x2=﹣1.【点睛】本题主要考查了一元二次方程的求解,掌握解一元二次方程的方法与步骤,准确利用公式法和因式分解法解方程是关键.2、(1)x1=1+2,x2=1﹣2;(2)x1=﹣1+,x2=﹣1﹣.【分析】(1)利用直接开平方法求出方程的解即可;(2)利用配方法求出方程的解即可.【详解】解:(1)整理,得2(x﹣1)2=16,(x﹣1)2=8,∴x﹣1=,∴x1=1+2,x2=1﹣2;(2)整理,得x2+2x=4,配方,得x2+2x+1=4+1,即(x+1)2=5, 解得:【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.3、(1)c=2;(2)当c>5时,m有0个;当c=5时,m有1个;当-1<c<5时,m有2个;当c=-1时,m有3个;当c<-1时,m有4个【分析】(1)只需求出y1=y2时对应一元二次方程有两个相等的实数根的c值即可;(2)根据题意,AB=|m2+2m+c-1|=3,分m2+2m+c-1>0和m2+2m+c-1<0两种情况,利用一元二次方程根的判别式与根的关系求解即可.【详解】解:(1)根据题意,若两个函数图像只有一个公共点,则方程x2+3x+c=x+1有两个相等的实数根,∴△=b2-4ac=22-4(c-1)=0,∴c=2;(2)由题意,A(m,m+1),B(m,m2+3m+c)∴AB=|m2+3m+c-m-1|=|m2+2m+c-1|=3,①当m2+2m+c-1>0时,m2+2m+c-1=3,即m2+2m+c-4=0,△=22-4(c-4)=20-4c,令△=20-4c=0,解得:c=5,∴当c<5时,△>0,方程有两个不相等的实数根,即m有2个;当c=5时,△=0,方程有两个相等的实数根,即m有1个;当c>5时,△<0,方程无实数根,即m有0个;②当m2+2m+c-1<0时,m2+2m+c-1=-3,即m2+2m+c+2=0,△=22-4(c+2)=-4c-4,令△=-4c-4=0,解得:c=-1,∴当c<-1时,△>0,方程有两个不相等的实数根,即m有2个;当c=-1时,△=0,方程有两个相等的实数根,即m有1个;当c>-1时,△<0,方程无实数根,即m有0个;综上,当c>5时,m有0个;当c=5时,m有1个;当-1<c<5时,m有2个;当c=-1时,m有3个;当c<-1时,m有4个.【点睛】本题考查函数图象上点的坐标特征、一元二次方程根的判别式与根的关系、坐标与图形,解答的关键是熟练掌握一元二次方程根的判别式与根的关系:△>0,方程有两个不相等的实数根,△=0,方程有两个相等的实数根,△<0,方程无实数根.4、(1)1号线客运量的月平均增长率为20%;(2)预计1号线在2022年1月份的客运量能突破200万人次.【分析】(1)设1号线客运量的月平均增长率为x,列出,求解即可;(2)按照客运量这样的月增长率,在2022年1月份的客运量为,计算出结果比较即可.【详解】解:(1)设1号线客运量的月平均增长率为x,则解得(舍去)(2)按照客运量这样的月增长率,1号线在2022年1月份的客运量为,(万人次)(万人次)答:(1)1号线客运量的月平均增长率为20%.(2)预计1号线在2022年1月份的客运量能突破200万人次.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题意列出相应的等式.5、(1),;(2),.【分析】(1)两边同除以3,然后直接开平方法进行求解即可;(2)根据公式法可直接进行求解.【详解】解:(1),∴,∴,;(2)∵,∴,∴,∴,.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共15页。试卷主要包含了关于x的一元二次方程,已知关于x的一元二次方程x2﹣,一元二次方程的解为等内容,欢迎下载使用。
这是一份数学北京课改版第十六章 一元二次方程综合与测试课后作业题,共17页。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共17页。试卷主要包含了用配方法解方程,则方程可变形为,已知方程的两根分别为m,小亮,一元二次方程的二次项系数等内容,欢迎下载使用。