北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习
展开
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习,共16页。试卷主要包含了一元二次方程x2﹣x=0的解是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x满足的方程是( )A. B.C. D.2、某中学组织九年级学生篮球比赛,以班为单位,每两班之间都比赛一场,总共安排15场比赛,则共有多少个班级参赛( )A.6 B.5 C.4 D.33、若一元二次方程x25x+k =0的一根为2,则另一个根为( )A.3 B.4 C.5 D.64、将方程化为一元二次方程的一般形式,正确的是( ).A. B. C. D.5、已知是一元二次方程的一个根,则代数式的值为( )A.2020 B.2021 C.2022 D.20236、若是关于的方程的一个根,则的值是( )A. B. C.1 D.27、已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为( )A.﹣2 B.2 C.﹣4 D.48、一元二次方程x2﹣x=0的解是( )A.x1=0,x2=1 B.x1=x2=1 C.x1=0,x2=﹣1 D.x1=1,x2=﹣19、关于x的方程有两个不相等的实数根,则n的取值范围是( )A.n< B.n ≤ C.n> D.n>10、方程2x2-3x=2的一次项系数和常数项分别是( )A.3和2 B.-3和2 C.3和-2 D.-3和-2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x,y的方程组有唯一解,则k的值是 _____.2、关于x的方程的一个根是,则m=________.3、设m,n分别为一元二次方程的两个实数根,则______.4、设x1,x2是方程x2-3x-1=0的两个根,则x1+x2=_____,x1x2=______.5、关于的一元二次方程有一个根为1,则的值为________.三、解答题(5小题,每小题10分,共计50分)1、已知关于x的方程x2 - 5x + m = 0(1)若方程有一根为 - 1,求m的值;(2)若方程无实数根,求m的取值范围2、(1)解一元二次方程:x2﹣6x+9=(5﹣2x)2;(2)求证:无论m取何值时,方程(x﹣3)(x﹣2)﹣m2=0总有两个不相等的实数根.3、用适当的方法解下列方程:(1)(x﹣1)2=9;(2)x2+4x﹣1=0.(3)3(x﹣5)2=4(5﹣x).(4)x2﹣4x+10=0.4、已知关于的一元二次方程.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于2,求的取值范围.5、解下列方程:(1)x2﹣2x=0;(2)x2+4x﹣8=0. -参考答案-一、单选题1、A【分析】股票的一次涨停便涨到原来价格的110%,再从110%跌到原来的价格,且跌幅小于等于10%,这样经过两天的下跌才跌到原来价格,x表示每天下跌的百分率,从而有110%•(1-x)2=1,这样便可找出正确选项.【详解】设x为平均每天下跌的百分率,
则:(1+10%)•(1-x)2=1;
故选:A.【点睛】考查对股票的涨停和跌停概念的理解,知道股票下跌x后,变成原来价格的(1-x)倍.2、A【分析】设共有x个班级参赛,根据第一个球队和其他球队打场球,每个球队都打场球,并且都重复一次,根据计划安排15场比赛即可列出方程求解.【详解】解:设共有x个班级参赛,根据题意得:,解得:,(不合题意,舍去),则共有6个班级参赛,故选:A.【点睛】本题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.3、A【分析】设方程的另一根为t,根据根与系数的关系得到2+t=5,求出t即可.【详解】解:设方程的另一根为t,根据题意得2+t=5,解得t=3.故选A.【点睛】本题考查了一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=,x1·x2=.4、B【分析】根据一元二次方程的概念,判断即可,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【详解】解:化为一元二次方程的一般形式为故选B【点睛】本题考查了一元二次方程的概念,掌握一元二次方程的一般形式是解题的关键.5、B【分析】把代入一元二次方程得到,再利用整体代入法解题即可.【详解】解:把代入一元二次方程得,,,故选:B.【点睛】本题考查一元二次方程的解、已知式子的值求代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.6、A【分析】将n代入方程,然后提公因式化简即可.【详解】解:∵是关于x的方程的根,∴,即,∵,∴,即,故选:A.【点睛】本题考查了一元二次方程的解,理解题意,熟练运用提公因式是解题关键.7、B【分析】根据根的含义将代入一元二次方程x2+k﹣3=0求解即可.【详解】解:∵一元二次方程x2+k﹣3=0有一个根为1,∴将代入得,,解得:.故选:B.【点睛】此题考查了已知一元二次方程的解求参数,解题的关键是熟练掌握一元二次方程解得概念.8、A【分析】方程左边含有公因式x,可先提取公因式,然后再分解因式求解.【详解】解:∵x2-x=0,∴x(x-1)=0,则x=0或x-1=0,解得:x1=0,x2=1.故选A.【点睛】本题考查一元二次方程的解法-因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.9、A【分析】利用判别式的意义得到△=>0,然后解不等式即可.【详解】解:根据题意得△=(﹣3)²﹣4n>0,解得n< .故选:A.【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.10、D【分析】先将方程变形,再根据一元二次方程方程的一般形式“一元二次方程的一般形式是,其中是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项”进行解答即可得.【详解】解:一次项系数为:-3,常数项为:-2,故选D.【点睛】本题考查了一元二次方程的一次项系数和常数项,解题的关键是熟记一元二次方程的一般形式.二、填空题1、-1或3或-1【分析】把①代入②,得到关于x的一元二次方程,根据判别式为0时方程有两个相等的实根,列出方程求出k即可.【详解】解: 把①代入②得,kx-1=x2+x,整理得,x2+(1-k)x+1=0使方程有唯一解,判别式为0,(1-k)2-4=0,解得k1=-1,k2=3.故答案为:-1或3【点睛】本题考查的是二元二次方程的解的判断,步骤是把方程组通过代入法化为一元二次方程,然后根据一元二次方程根的判别式进行判断.2、【分析】将代入方程即可求解.【详解】解:关于x的方程的一个根是,解得故答案为:【点睛】本题考查了一元二次方程的解定义,掌握方程解的定义是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.3、2019【分析】由韦达定理可列出m,n的代数值,代入计算即可.【详解】∵m,n分别为一元二次方程的两个实数根∴m+n=-2,则【点睛】本题考查了韦达定理,如果的两个实数根是,那么,.推论1:如果方程的两个根是,那么,.推论2:以两个数为根的一元二次方程(二次项系数为1)是.4、3 -1 【分析】利用一元二次方程根与系数的关系,即可求解.【详解】解:∵x1,x2是方程x2-3x-1=0的两个根,∴ .故答案为:3,-1【点睛】本题主要考查了一元二次方程的根与系数的关系,熟练掌握若,是一元二次方程 的两个实数根,则,是解题的关键.5、-5【分析】直接利用一元二次方程的解的意义将x=1代入求出答案.【详解】解:∵关于x的一元二次方程的一个根是1,
∴12+m+4=0,
解得:m=-5.
故答案是:-5.【点睛】此题主要考查了一元二次方程的解,正确理解一元二次方程解的意义是解题关键.三、解答题1、(1)m的值为.(2)【分析】(1)将代入原方程,即可求出m的值.(2)令根的判别式,即可求出m的取值范围.【详解】(1)解:方程有一根为 - 1,是该方程的根,,解得:,故m的值为.(2)解:方程无实数根,解得:.【点睛】本题主要是考查了一元二次方程的根以及根的判别式,熟练利用根的判别式,求出对应无实数根的方程中的参数取值,这是解决该题的关键.2、(1);(2)见详解.【分析】(1)首先利用完全平方公式以及平方差公式分解因式,进而解方程得出即可;
(2)首先表示出Δ,得出Δ符号进而求出即可.【详解】(1)解:,,
则,
整理得:,
解得:;
(2)证明:把化为一般形式:,
,
故无论m为何值,4m2+1永远大于0,则方程总有两个不相等的实数根.【点睛】此题主要考查了因式分解法解一元二次方程以及根的判别式,正确分解因式是解题关键.3、(1)x1=4,x2=﹣2(2)(3)(4)【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可.(3)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.(4)先判断是否有解,若有解,可直接利用公式法求解即可.(1)解:(x﹣1)2=9,∴x﹣1=3或x﹣1=﹣3,∴x1=4,x2=﹣2.(2)解:x2+4x﹣1=0,x2+4x=1,x2+4x+4=1+4,即(x+2)2=5,∴x+2=或x+2=﹣,∴x1=﹣2+,x2=﹣2﹣.(3)解:∵3(x﹣5)2=4(5﹣x),∴3(x﹣5)2+4(x﹣5)=0,∴(x﹣5)(3x﹣11)=0,则x﹣5=0或3x﹣11=0,解得x1=5,x2=.(4)解:∵a=1,b=﹣4,c=10,∴Δ=(﹣4)2﹣4×1×10=8>0,∴x===2±,∴,.【点睛】本题考查了一元二次方程的解法,要根据不同的方程采取不同的方法,解题时要先判断方程是否有根.4、(1)证明见解析;(2).【分析】(1)根据方程的系数结合根的判别式,可得△=(k−4)2≥0,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x1=4,x2=k,根据方程有一根小于2,即可得出k的取值范围.【详解】(1)∵,∴△=,∴方程总有两个实数根.(2)∵,∴,解得:,,∵该方程有一个根小于2,∴.【点睛】本题考查了根的判别式、因式分解法解一元二次方程,利用因式分解法解一元二次方程表示出方程的两个根,熟练掌握当△≥0时,方程有两个实数根是解题关键.5、(1);(2).【分析】(1)利用因式分解法解一元二次方程即可得;(2)利用公式法解一元二次方程即可得.【详解】解:(1),,或,;(2),此方程中的,则,即,所以.【点睛】本题考查了解一元二次方程,熟练掌握方程的解法是解题关键.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试测试题,共16页。试卷主要包含了若a是方程的一个根,则的值为等内容,欢迎下载使用。
这是一份数学北京课改版第十六章 一元二次方程综合与测试复习练习题,共18页。试卷主要包含了方程的解是,方程(x-1)2 = 0的根是,若a是方程的一个根,则的值为等内容,欢迎下载使用。
这是一份数学八年级下册第十六章 一元二次方程综合与测试当堂达标检测题,共18页。试卷主要包含了方程的解是,一元二次方程根的情况是等内容,欢迎下载使用。