2020-2021学年第十六章 一元二次方程综合与测试课堂检测
展开京改版八年级数学下册第十六章一元二次方程定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列所给方程中,没有实数根的是( )
A. B.
C. D.
2、如图,在一块长为30m,宽为20m的矩形地面上,要修建同样宽的两条互相垂直的道路,剩余部分种上草坪,使草坪面积为300m2,若设道路宽为xm,则根据题意可列方程为( )
A. B.
C. D.
3、方程x2=4x的解是( )
A.x=4 B.x=2 C.x=4或x=0 D.x=0
4、一元二次方程的一个根为,那么c的值为( ).
A.9 B.3 C. D.
5、用配方法解方程x2-4x-3=0时,配方后的方程为( )
A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=7 D.(x-2)2=7
6、方程x2﹣8x=5的根的情况是( )
A.有两个不相等的实数根 B.没有实数根
C.有两个相等的实数根 D.有一个实数根
7、将方程化为一元二次方程的一般形式,正确的是( ).
A. B. C. D.
8、若m是方程2x2﹣3x﹣1=0的一个根,则﹣6m2+9m﹣13的值为( )
A.﹣16 B.﹣13 C.﹣10 D.﹣8
9、若是关于的方程的一个根,则的值是( )
A. B. C.1 D.2
10、关于x的一元二次方程x2-mx+(m-2)=0的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.根据m的取值范围确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,设二、三两个月新注册用户每月平均增长率是x,根据题意,可列方程为___________.
2、已知关于x方程的一个根是1,则m的值等于______.
3、若m是一元二次方程2x2+3x﹣1=0的一个根,则4m2+6m﹣2021=________.
4、若为整数,关于的一元二次方程有实数根,则整数的最大值为__________.
5、现规定一种新的运算:,当时,则的值为____.
三、解答题(5小题,每小题10分,共计50分)
1、2021年12月9日,在神州十三号载人飞船上,翟志刚、王亚平、叶光富三位航天员为广大青少年开讲“天宫课堂”第一课,这是中国空间站首次太空授课活动.在此期间,我校“对话太空”兴趣小组举行了航天科普知识有奖竞答活动,并购买“神州载人飞船”模型作为奖品,学校在商店里了解到:如果一次性购买数量不超过10个,每个模型的单价为40元;如果一次性购买数量超过10个,每多购买一个,每个模型的单价均降低0.5元,但每个模型最低单价不低于30元,若学校为购买“神州载人飞船”模型一次性付给商店900元,请求出学校购买“神州载人飞船”模型的数量.
2、某蔬菜交易市场2020年10月份的蔬菜交易量是5000吨,到2020年12月份达到7200吨.
(1)求这两个月平均每月增长的百分率.
(2)按(1)中的增长率,预测2021年1月份的交易量是 吨.
3、解下列方程:
(1)x2﹣2x+1=25.
(2)3x(x - 1)= 2(x - 1).
4、解方程:
5、解方程:.
-参考答案-
一、单选题
1、D
【分析】
逐一求出四个选项中方程的根的判别式Δ的值,取其小于零的选项即可得出结论.
【详解】
解:A、∵Δ=(﹣2)2﹣4×1×0=4>0,
∴一元二次方程有两个不相等的实数根;
B、∵Δ=(﹣4)2﹣4×5×(-2)=56>0,
∴一元二次方程有两个不相等的实数根;
C、∵Δ=(﹣4)2﹣4×3×1=4>0,
∴一元二次方程有两个不相等的实数根;
D、∵Δ=(﹣3)2﹣4×4×2=-23<0,
∴一元二次方程没有实数根.
故选:D.
【点睛】
本题考查了一元二次方程根的判别式,牢记“当Δ<0时,一元二次方程没有实数根”是解题的关键.
2、B
【分析】
根据题意草坪的长为m,宽为m,根据长方形的面积公式列出一元二次方程即可
【详解】
解:设道路宽为xm,则根据题意可列方程为
故选B
【点睛】
本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
3、C
【分析】
本题可先进行移项得到:x2﹣4x=0,然后提取出公因式x,两式相乘为0,则这两个单项式必有一项为0.
【详解】
解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,
∴x=0或x=4
故选:C.
【点睛】
本题主要考查了一元二次方程的计算,准确分析计算是解题的关键.
4、D
【分析】
把x=-3代入方程,然后解关于c的方程即可.
【详解】
解:把x=-3代入方程得
9+c=0,
所以c=-9.
故选D.
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
5、D
【分析】
根据配方法转化为的形式,问题得解.
【详解】
解:x2-4x-3=0,
移项得,
配方得,
∴.
故选:D
【点睛】
本题考查了配方法解一元二次方程,熟知配方法的步骤并准确配方(在二次项系数为1时,方程两边同时加上一次项系数一半的平方)是解题的关键.
6、A
【分析】
计算一元二次方程根的判别式求解即可.
【详解】
∵方程x2﹣8x=5,
移项得:,
,,,
∴判别式,
∴方程有两个不相等的实数根,
故选:A.
【点睛】
此题考查了一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式.当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程没有实数根.
7、B
【分析】
根据一元二次方程的概念,判断即可,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
【详解】
解:化为一元二次方程的一般形式为
故选B
【点睛】
本题考查了一元二次方程的概念,掌握一元二次方程的一般形式是解题的关键.
8、则此三角形的周长是1
故选:C.
【点睛】
本题考查一元二次方程的解法,三角形三边关系,三角形的周长,掌握一元二次方程的解法,三角形三边关系,三角形的周长是解题关键.
5.A
【分析】
将m代入2x2﹣3x﹣1=0可得2m2﹣3m﹣1=0,再化简所求代数为﹣6m2+9m﹣13=-3(2m2﹣3m)﹣13,即可求解.
【详解】
解:∵m是方程2x2﹣3x﹣1=0的一个根,
∴2m2﹣3m﹣1=0,
∴2m2﹣3m=1,
∴﹣6m2+9m﹣13=﹣3(2m2﹣3m)﹣13=﹣3×1﹣13=﹣16,
故选:A.
【点睛】
本题考查一元二次方程的解,熟练掌握一元二次方程的解与一元二次方程的关系,灵活变形所求代数式是解题的关键.
9、A
【分析】
将n代入方程,然后提公因式化简即可.
【详解】
解:∵是关于x的方程的根,
∴,即,
∵,
∴,即,
故选:A.
【点睛】
本题考查了一元二次方程的解,理解题意,熟练运用提公因式是解题关键.
10、A
【分析】
根据根的判别式判断即可.
【详解】
∵,
∴方程有两个不相等的实数根.
故选:A.
【点睛】
本题考查一元二次方程根的判别式,当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根,熟记判别式并灵活应用是解题关键.
二、填空题
1、
【分析】
设二、三两个月新注册用户每月平均增长率是x,根据该买菜APP今年一月份及三月份新注册用户人数,即可得出关于x的一元二次方程.
【详解】
解:设二、三两个月新注册用户每月平均增长率是x,
依题意,得:200(1+x)2=338,
故答案为:
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
2、2
【分析】
把方程的根代入原方程,求解即可.
【详解】
解:因为关于x方程的一个根是1,
所以,,解得,,
故答案为:2.
【点睛】
本题考查了一元二次方程的根,解题关键是明确方程根的意义,代入原方程求解.
3、﹣2019
【分析】
根据方程的根的定义,把x=m代入方程求出2m2+3m的值,然后整体代入代数式进行计算即可得解.
【详解】
解:∵m是一元二次方程2x2+3x1=0的一个根,
∴2m2+3m1=0,
整理得,2m2+3m=1,
∴4m2+6m2021=2(2m2+3m)2021=2×12021=2019.
故答案为:﹣2019.
【点睛】
本题考查了一元二次方程的解,利用整体思想求出2m2+3m的值,然后整体代入是解题的关键.
4、3
【分析】
根据一元二次方程的二次项的系数不等于0、根的判别式求出的取值范围,由此即可得出答案.
【详解】
解:由题意得:,
解得,且,
为整数,
整数的最大值为3,
故答案为:3.
【点睛】
本题考查了一元二次方程根的判别式等知识点,熟练掌握一元二次方程根的判别式是解题关键.
5、2或3或2
【分析】
根据新定义运算把原式转化成一元二次方程,解方程即可.
【详解】
解:由可得,;
,
,
,
解得,;
故答案为:2或3.
【点睛】
本题考查了新定义运算和解一元二次方程,解题关键是根据题意把原式转化为一元二次方程.
三、解答题
1、30个.
【分析】
设学校一次性购买这种“神州载人飞船”模型x个,然后找出等量关系,列出方程,解方程即可求出答案.
【详解】
解:根据题意,设学校一次性购买这种“神州载人飞船”模型x个,则
实际销售单价为:400.5×(x10)=450.5x(元);
∵,
∴;
∴,
解得:或(舍去);
∴学校购买30个“神州载人飞船”模型的数量.
【点睛】
本题考查了一元二次方程的应用,解题的关键是设出“神州载人飞船”模型的个数并表示出销售单价.
2、(1)20%;(2)8640.
【分析】
(1)设这两个月平均每月增长的百分率为x,利用2020年12月份的蔬菜交易量=2020年10月份的蔬菜交易量×(1+这两个月平均每月增长的百分率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)利用2021年1月份的蔬菜交易量=2020年12月份的蔬菜交易量×(1+这两个月平均每月增长的百分率),即可求出结论.
【详解】
解:(1)设这两个月平均每月增长的百分率为x,
依题意得:5000(1+x)2=7200,
化简得25x2+50x-9=0
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:这两个月平均每月增长的百分率为20%.
(2)7200×(1+20%)=8640(吨).
故答案为:8640.
【点睛】
本题考查了二次函数相关的增长率问题,有关增长率问题的等量关系:①原产量+增产量=现在的产量;②增产量=原产量×增长率;③现在的产量=原产量×(1+增长率).④若连续n个月增长率相同则有:a(1+增长率)n=b.对于连续变化的问题,都是以前一个时间段为基础,平均增长(降低)率也是如此,如二月份的产量是在一月份的基础上变化的,三月份的产量是在二月份的基础上变化的.
3、(1),;(2),
【分析】
(1)利用直接开方法解方程即可;
(2)利用提取公因式法解方程即可.
【详解】
解:(1),
,
∴,
;
(2)3x(x-1)=2(x-1),
3x(x-1)-2(x-1)=0,
(x-1)(3x-2)=0,
∴x-1=0或3x-2=0,
∴x1=1,.
【点睛】
本题主要考查了解一元二次方程的方法,准确计算是解题的关键.
4、
【分析】
直接用公式法求解即可.
【详解】
∴
∴
,
【点睛】
本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
5、或
【分析】
利用十字相乘因式分解,进而即可求解.
【详解】
,
,
∴或,
解得:或.
【点睛】
本题主要考查解一元二次方程,熟练掌握“十字相乘法”是解题的关键.
初中数学第十五章 四边形综合与测试习题: 这是一份初中数学第十五章 四边形综合与测试习题,共24页。试卷主要包含了下列图形中不是中心对称图形的是,以下分别是回收,下列命题是真命题的是等内容,欢迎下载使用。
北京课改版八年级下册第十六章 一元二次方程综合与测试课后测评: 这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课后测评,共16页。试卷主要包含了一元二次方程根的情况是,下列事件为必然事件的是,股市规定,一元二次方程x2=-2x的解是等内容,欢迎下载使用。
数学八年级下册第十六章 一元二次方程综合与测试课时训练: 这是一份数学八年级下册第十六章 一元二次方程综合与测试课时训练,共15页。试卷主要包含了一元二次方程x2=-2x的解是,下列事件为必然事件的是等内容,欢迎下载使用。