![精品试卷:京改版七年级数学下册第五章二元一次方程组综合测评试题(含答案及详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12699152/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷:京改版七年级数学下册第五章二元一次方程组综合测评试题(含答案及详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12699152/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷:京改版七年级数学下册第五章二元一次方程组综合测评试题(含答案及详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12699152/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学北京课改版第五章 二元一次方程组综合与测试复习练习题
展开这是一份数学北京课改版第五章 二元一次方程组综合与测试复习练习题,共22页。试卷主要包含了如果与是同类项,那么的值是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )
A. B. C. D.
2、下列是二元一次方程的是( )
A.3x﹣6=x B.3x=2y C.x﹣=0 D.2x﹣3y=xy
3、下列各组数值是二元次方程2x﹣y=5的解是( )
A. B. C. D.
4、如果的解都是正数,那么a 的取值范围是( ).
A.a<2; B.; C. ; D.
5、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为( )
A. B.
C. D.
6、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )
A.330千米 B.170千米 C.160千米 D.150千米
7、下列方程组中,是二元一次方程组的是( )
A. B. C. D.
8、如果与是同类项,那么的值是( )
A. B. C. D.
9、有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x,一位数是y,则可列方程组为( )
A. B.
C. D.
10、下列方程组中,不是二元一次方程组的是( ).
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果与是同类项,则x-y的值是______.
2、重庆市举行了中学生足球联赛,共赛17轮(即每队均需比赛17场),记分办法是胜一场得3分,平一场得1分,负一场得0分.若文德中学足球队的积分为16分,且踢平场数是所负场数的整数倍,且胜、平、负的场数各不相同.则文德中学足球队共负____场.
3、若是一个三元一次方程,那么_______, ________.
4、将一张面值50元的人民币,兑换成5元或10元的零钱,两种人民币都要有,那么共有_____种兑换方案.
5、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨,洁柔超值装的价格是其促销价的,而妮飘进口装的价格在其第一天的基础上增加了,第二天洁柔体验装与妮飘进口装的销量之比为,洁柔超值装的销量比第一天的销量减少了.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.
三、解答题(5小题,每小题10分,共计50分)
1、(1)解方程组;
(2)解不等式组.
2、学校计划从某花卉供应商家定制一批花卉来装扮校园(花盆全部为同一型号),该商家委托某货运公司负责这批花卉的运输工作.该货运公司有甲、乙两种专门运输花卉的货车,已知1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉.1辆甲型货车满载一次可运输多少盆花卉?1辆乙型货车满载一次可运输多少盆花卉?
3、解方程组
(1)
(2)
4、解方程(组):
(1);
(2).
5、(1)解二元一次方程组
(2)现在你可以用哪些方法得到方程组的解?请你对这些方法进行比较.
---------参考答案-----------
一、单选题
1、A
【分析】
直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.
【详解】
解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:
.
故选:A.
【点睛】
此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.
2、B
【分析】
根据二元一次方程的定义逐项判断即可得.
【详解】
A、是一元一次方程,此项不符合题意;
B、是二元一次方程,此项符合题意;
C、是分式方程,此项不符合题意;
D、是二元二次方程,此项不符合题意;
故选:B.
【点睛】
本题考查了二元一次方程的定义:含有2个未知数,未知数的项的次数是1的整式方程是二元一次方程.注意分母中有字母的情况是不符合二元一次方程定义的.
3、D
【分析】
将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.
【详解】
解:A. 把代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;
B. 把代入方程2x﹣y=5,0-5=-5≠5,不满足题意;
C. 把代入方程2x﹣y=5,2-3=-1≠5,不满足题意;
D. 把代入方程2x﹣y=5,6-1=5,满足题意;
故选:D.
【点睛】
本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.
4、C
【分析】
先解方程组,求出用含a表示的x、y,根据方程组的解为正数,列不等式求解即可.
【详解】
解:,
①×2得,
③+②得,
把代入①得,
,
∵的解都是正数,
∴,
解得.
故选择C.
【点睛】
本题考查含参数的二元一次方程组,不等式组,熟练掌握二元一次方程组解法,不等式组解法是解题关键.
5、B
【分析】
设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.
【详解】
解:设甲持钱x,乙持钱y,
根据题意,得:,
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
6、C
【分析】
设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.
【详解】
解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,
依题意得: ,
解得: ,
,
故选:C.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
7、C
【分析】
根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.
【详解】
解:A. 第二个方程中的是二次的,故本选项错误;
B.方程组中含有3个未知数,故本选项错误;
C. 符合二元一次方程组的定义,故本选项正确;
D. 第二个方程中的xy是二次的,故本选项错误.
故选C.
【点睛】
:根据组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,判断各选项即可.
8、A
【分析】
利用同类项定义列出方程组,求出方程组的解即可得到a与b的值.
【详解】
解:∵xa+2y3与﹣3x3y2b﹣a是同类项,
∴,
解得:
所以.
故选:A.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
9、D
【分析】
若设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,再分别根据这两数的和为39和两位数放在一位数的前面得到的三位数比将一位数放在两位数的前面得到的三位数大27,即可得出方程组.
【详解】
解:设两位数是x,一位数是y,则两位数放在一位数的前面,得到的三位数为10x+y,将一位数放在两位数的前面得到的三位数为100y+x,依题意得:
,
故选D.
【点睛】
此题主要考查了二元一次方程组的应用,根据已知正确的表示出两个三位数是解题关键.
10、B
【分析】
依据二元一次方程组的定义求解即可.
【详解】
利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;
方程组中,可以整理为所以C也符合;
B中含有三个未知数不符合二元一次方程组的定义.
故答案选B
【点睛】
本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.
二、填空题
1、-1
【解析】
【分析】
根据同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项,据此求解即可.
【详解】
解:∵与是同类项,
∴,
∴,
∴,
故答案为:-1.
【点睛】
本题主要考查了同类项的定义和代数式求值,解题的关键在于能够熟练掌握同类项的定义.
2、1或5##5或1
【解析】
【分析】
设该校足球队胜了x场,平了y场,负了z场,依题意建立方程组,解方程组从而用k(整数)表示负场数y=kz,根据z为整数,分别求出k的取值,然后求出x、y的值,继而可得出该校足球队负几场即可.
【详解】
解:设文德中学足球队胜了x场,平了y场,负了z场,由题意得,
,
把③代入①②得:
,
解得:(k为整数).
又∵z为正整数,
∴当k=1时,z=7,y=7,x=3,(因为胜、平、负的场数各不相同,所以,不符合题意,舍去)
当k=2时,z=5,y=10,x=2;
当k=16时,z=1,y=16,x=0,
所以,文德中学足球队负了1或5场.
故答案为:1或5.
【点睛】
本题考查了三元一次组的应用,解答本题的关键是设出未知数列出方程组,用k表示出z的值,根据z为整数,即可分类讨论出z的值.
3、 -1 0
【解析】
【分析】
根据三元一次方程的定义:含有三个未知数,未知数的次数都是1的方程,由此可得,解出即可得出答案.
【详解】
由题意得:,
解得:.
故答案为:-1,0.
【点睛】
本题考查了三元一次方程,解题关键是掌握三元一次方程的定义.
4、4
【解析】
【分析】
设兑换成面值5元的人民币x张,面值10元的人民币y张,根据兑换成零钱的总价值为50元,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出共有4种兑换方案.
【详解】
设兑换成面值5元的人民币x张,面值10元的人民币y张,
依题意得:5x+10y=50,
∴x=10﹣2y.
又∵x,y均为正整数,
∴或或或,
∴共有4种兑换方案.
故答案为:4.
【点睛】
本题考查了列二元一次方程组,利用二元一次方程组的解进行方案设计的方法,优化方案问题先要列举出所有可能的方案,再按题目要求分别求出每种方案的具体结果.
5、
【解析】
【分析】
设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,第二天,洁柔体验装的原价为: ,销售量为包,洁柔超值装的原价为: ,销售量为包,妮飘进口装的原价为: ,销售量为 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得,进而可得 为整数,即可求得,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 ,由 都是整数,则 能被 和整除的数即能被整除,即可求得,则这两天妮飘进口装的总销售额为,即 ,代入数值求解即可.
【详解】
解:设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,
,, 则
第二天,洁柔体验装的原价为:,销售量为包,洁柔超值装的原价为:,销售量为包,妮飘进口装的原价为:,销售量为包,
,即
则
第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元
即
即
或
为整数,
解得或
洁柔体验装的原价为:是整数,则,洁柔超值装的原价为:是整数则
第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,
即
解得
都是整数,则能被和整除的数即能被整除
故答案为:14960
【点睛】
本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键.
三、解答题
1、(1);(2)
【分析】
(1)对方程组进行化简,然后利用加减消元法求解即可;
(2)分别求得每个不等式的解集,然后取共同的部分即可.
【详解】
解:(1)方程组,可化简为
①+②式得,,解得
将代入①式得:,解得
故方程组的解为
(2)不等式组,
解不等式,可得:
解不等式,可得:
所以不等式组的解集为
【点睛】
此题考查了二元一次方程组和一元一次不等式组的求解,解题的关键是熟练掌握方程组和不等式组的求解方法.
2、1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉.
【分析】
设1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,根据等量关系:1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉,列方程组,解方程组即可.
【详解】
解:设1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,
根据题意得:,
把②代入①×2得,
解得,
把代入②得,
解得x=500,
∴,
答1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉.
【点睛】
本题考查列二元一次方程组解应用题,掌握列二元一次方程组解应用题的方法与步骤,抓住等量关系1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉列方程组是解题关键.
3、(1);(2)
【分析】
(1)先将两个方程相减求解 再求解即可;
(2)把看作整体未知数,可得,,再利用加减消元法可得答案.
【详解】
解:(1)
①-②得:
解得:
把代入②得:
所以方程组的解为:;
(2)
由②得:③
①-③得:
解得:④
把④代入①得:⑤
④+⑤得:
把代入④得:
所以方程组的解为:
【点睛】
本题考查的是利用加减消元法解二元一次方程组,把看作的整体未知数是解(2)中方程组的关键.
4、(1)x=;(2)
【分析】
(1)方程去分母,去括号,移项,合并同类项,系数化为1即可;
(2)方程组利用加减消元法求解即可.
【详解】
解:(1),
去分母,得2(2x﹣1)+(x﹣2)=4,
去括号,得4x-2+x﹣2=4,
移项,得4x+x=4+2+2,
合并同类项,得5x=8,
系数化为1,得x=;
(2),
①×2+②,得,
解得x=2,
把x=2代入②,得8﹣2y=10,
解得x=﹣1,
故方程组的解为.
【点睛】
此题主要考查一元一次方程与二元一次方程组的求解,解题的关键是熟知其解法的运用.
5、(1);(2)见解析
【分析】
(1)利用加减消元法解方程组;
(2)方法一:将两个方程分别化简再求解;方法二:根据(1)可得方程的解为,再利用加减法求解.
【详解】
解:(1),
由得16y=48,
∴y=3,
将y=3代入①得x=5,
∴这个方程组的解是;
(2)方法一:去括号得到方程组再解得结果;
方法二:由(1)解为,可得的解为,解得.
【点睛】
此题考查解二元一次方程组,掌握二元一次方程组的解法:代入法和加减法,(2)可灵活运用解题方法求解,渗透一定的整体换元思想和化归思想.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试达标测试,共20页。试卷主要包含了如图,9个大小等内容,欢迎下载使用。
这是一份初中数学第五章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了若是方程的解,则等于,有铅笔等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试课后复习题,共19页。试卷主要包含了下列方程中,①x+y=6;②x,设m为整数,若方程组的解x,二元一次方程组的解是等内容,欢迎下载使用。