初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试精练
展开这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共22页。试卷主要包含了下列是二元一次方程的是,小明在解关于x等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在某场CBA比赛中,某位运动员的技术统计如下表所示:
技术 | 上场时间(分钟) | 出手投篮(次) | 投中(次) | 罚球得分(分) | 篮板(个) | 防攻(次) | 个人总得分(分) |
数据 | 38 | 27 | 11 | 6 | 3 | 4 | 33 |
注:①表中出手投篮次数和投中次数均不包括罚球;
②总得分=两分球得分+三分球得分+罚球得分.
根据以上信息,本场比赛中该运动员投中两分球和三分球各( )个.
A.5,6 B.6,5 C.4,7 D.7,4
2、已知是二元一次方程,则的值为( )
A. B.1 C. D.2
3、方程组的解是( )
A. B. C. D.
4、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ).
A.11支 B.9支 C.7支 D.5支
5、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为( )
A. B.
C. D.
6、已知是方程x﹣my=3的解,那么m的值为( )
A.2 B.﹣2 C.4 D.﹣4
7、下列是二元一次方程的是( )
A.3x﹣6=x B.3x=2y C.x﹣=0 D.2x﹣3y=xy
8、小明在解关于x、y的二元一次方程组时得到了正确结果.后来发现、处被墨水污损了,请你帮他计算出、处的值分别是( ).
A.1、1 B.2、1 C.1、2 D.2、2
9、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为( )
A. B.
C. D.
10、下列方程组为二元一次方程组的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知实数x,y满足x+y=3,且x>﹣3,y≥1,则x﹣y的取值范围____.
2、网络时代的到来,让网购成为人们生活中随处可见的操作,快递员也成为一项方便人们生活重要的职业,A,B,C三位快递员在三个不同的快递公司进行派件工作,且每件快递派送费用有一定差别,B快递员的每件快递派送费是A的2倍,且A快递员每件快递派送费为整数.平时每位快递员的每天派送件数基本保持稳定,B快递员每天派送的数量是C的1.5倍,C快递员每天派送的数量为200件,三位快递员平时一天的总收入为800元.由于本周处于双12购物节期间,大量快选带留,三位派送员加班加点进行派送,每件快递派送费不发生变化,每天的派送比平时均有变化,A快递员比平时的1.5倍还多60件,B快递员比平时的2倍多100件,c快递员是平时的3倍,此时每天三位快递员一天总收入增加到1940元则B快递员在双12购物节派送期间每天收入为 _____元.
3、一元二次方程x﹣3y=8写成用含y的代数式表示x的形式为______.
4、某玩具店在10月份开始售卖中国航天系列的模型积木,其中包括款(中国载人空间站)、款(长征五号运载火箭)、款(火星探测器)、款(天舟货运飞船)、款(航天员公仔),所有模型积木的售价均为整数.在10月份售卖过程中,款和款的售价相同且售价在100元与200元之间,款的售价比款售价低50元,款售价比款售价高40元,款、款、款、款、款的销量之比为,且10月份款与款的销售总额比款的销售额多1000元,款的销售额比款的销售额少20元.进入11月,随着双11购买节的临近,玩具店决定在双11这一天举行促销活动,相比10月份各款的售价,款和款的售价都降低30元,款的售价降低20元,款、款降低的价格都为款降低价格的.活动结束后统计发现:活动当天,款销量比10月份的款销量增加了50%,款销量为10月份自身销量的2倍,款销量增加了10月份款销量的一半,款销量与10月份款销量相同,而款销量相比10月份自身销量有所增加,且活动当天各款模型积木销售总额比10月份款、款、款销售总额的2倍多348元,则双11促销活动当天购买一套中国航天系列的模型积木(款、款、款、款、款各一个)需要__________元.
5、关于x、y的方程组的解也是方程的解,则m的值为____.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:
(1)
(2)
2、解方程组:
(1);
(2).
3、解下列方程组
(1); (2);
4、如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、和校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:
步骤1:计算前12位数字中偶数位数字的和a,即a=9+1+3+5+7+9=34;
步骤2:计算前12位数字中奇数位数字的和b,即b=6+0+2+4+6+8=26;
步骤3:计算3a与b的和c,即c=3×34+26=128;
步骤4:取大于或等于c且为10的整数倍的最小数d,即d=130;
步骤5:计算d与c的差就是校验码X,即X=130﹣128=2.
请解答下列问题:
(1)《数学故事》的条形码为978753454647Y,则校验码Y的值为 ;
(2)如图1,某条形码中的一位数字被墨水污染了,请求出这个数字;
(3)如图2,条形码中被污染的两个数字的和是5,这两个数字从左到右分别是 、 .
5、解下列方程组:
(1)
(2)
---------参考答案-----------
一、单选题
1、B
【分析】
设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
解:设本场比赛中该运动员投中两分球x个,三分球y个,
根据题意得:,
解得:.
答:设本场比赛中该运动员投中两分球6个,三分球5个.
故选:B.
【点睛】
本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.
2、C
【分析】
根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.
【详解】
解:∵是二元一次方程,
∴ ,且 ,
解得: .
故选:C
【点睛】
本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.
3、C
【分析】
先用加减消元法解二元一次方程组,再确定选项即可.
【详解】
解:方程组
由①×3+②得10x=5,
解得,
把代入①中得,
所以原方程组的解是.
故选择C.
【点睛】
本题考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是关键.
4、D
【分析】
根据题意列出三元一次方程组消元,再求解即可.
【详解】
解:设购买甲、乙、丙三种钢笔分别为x、y、z支,由题意,得
①×4-②×5得,
所以,
将代入①,得.
即.
∵,
∴,
∴x为小于6的正整数,
四个选项中只有D符合题意;
故选D.
【点睛】
本题考查了三元一次方程组,一元一次不等式,熟练掌握列方程组,解不等式的基本步骤是解题的关键.
5、B
【分析】
设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.
【详解】
解:设甲持钱x,乙持钱y,
根据题意,得:,
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
6、A
【分析】
直接将代入x﹣my=3中即可得出答案.
【详解】
解:∵是方程x﹣my=3的解,
∴,
解得:,
故选:A.
【点睛】
本题考查了二元一次方程的解,熟知二元一次方程的解即为能使二元一次方程成立的未知数的值.
7、B
【分析】
根据二元一次方程的定义逐项判断即可得.
【详解】
A、是一元一次方程,此项不符合题意;
B、是二元一次方程,此项符合题意;
C、是分式方程,此项不符合题意;
D、是二元二次方程,此项不符合题意;
故选:B.
【点睛】
本题考查了二元一次方程的定义:含有2个未知数,未知数的项的次数是1的整式方程是二元一次方程.注意分母中有字母的情况是不符合二元一次方程定义的.
8、B
【分析】
将方程组的解代入方程求解即可.
【详解】
将代入,得,
解之得.
故选:B.
【点睛】
此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法和加减法,并根据方程组的特点选择恰当的解法是解题的关键.
9、B
【分析】
设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可
【详解】
解:设馒头每个元,包子每个元,根据题意得
故选B
【点睛】
本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.
10、B
【分析】
根据二元一次方程组的定义,即含有两个未知数,并且所含未知数的项的次数都是 1 的方程组在一起叫做二元一次方程组判断即可;
【详解】
解A.中,xy的次数是2,故A不符合题意;
B.是二元一次方程组,故B符合题意;
C.中y在分母上,故C不符合题意;
D.中有3个未知数,故D不符合题意;
故选B.
【点睛】
本题主要考查了二元一次方程组的识别,掌握二元一次方程组的定义,准确分析是解题的关键.
二、填空题
1、
【解析】
【分析】
先设x﹣y=m,利用x+y=3,构造方程组,求出用m表示x、y的代数式,再根据x>﹣3,y≥1,列不等式求出m的范围即可.
【详解】
解:设x﹣y=m,
∴,
②+①得,
②-①得,
∵y≥1,
∴,
解得,
∵x>﹣3,
∴,
解得,
∴,
x﹣y的取值范围.
故答案为.
【点睛】
本题考查方程与不等式综合问题,解题关键是设出x﹣y=m,与x+y=3,构造方程组从中求出,,再出列不等式.
2、1400
【解析】
【分析】
设A每件快递派送费为x元,A每天派送件数为y件,C每件快递派送费为z元,根据题意列出x、y、z的方程,进而解方程即可求解.
【详解】
解:设A每件快递派送费为x元,B每件快递派送费为2x元,C每件快递派送费为y元,A平时每天派送件数为z件,根据题意,B平时每天派送件数为300件,双12购物节期间,A每天派送件数为(1.5z+60)件,B每天派送件数为700件,
根据题意,,即:,
∵x为整数,
∴由得x=1,
则有:,
解得:,
∴B每件快递派送费为2元,则B快递员在双12购物节派送期间每天收入为2×700=1400元,
故答案为:1400.
【点睛】
本题考查三元一次方程组的应用、解二元一次方程组,理解题意,找准等量关系,正确列出方程组,得出x=1是解答的关键.
3、3y+8##8+3y
【解析】
【分析】
移项,利用等式的性质变形即可.
【详解】
解: x﹣3y=8
x=3y+8
故答案为:3y+8
【点睛】
本题属于二元一次方程变形的问题,依据等式的性质变形即可.本题比较简单.
4、
【解析】
【分析】
根据十月份的数据,求得十月份的销售量以及款、款的销售价,再根据十一月份的数据,以及销售价和销售量的范围,求得十月份款、款、款的售价,即可求解.
【详解】
解:设十月份款、款售价为元,则,且为整数,则款的售价为元,款、款的销售价分别为,元,
根据十月份销售量款、款、款、款、款的销量之比为
设销售量分别为,,,,件
则由题意可得:,解得
由题意可得:十一月份款、款、款、款、款的售价分别为:,,,,元
销售量款、款、款、款、款的销量分别为:、、,,件,
由题意可得:
化简得
∵,即
解得
∴
∵,都为正整数,
∴能被整除,则的个位数字为或
则的个位数字为或,则的个位数字为为或
∴,经检验当时,不为整数,舍去,
所以,此时
双11促销活动当天购买一套中国航天系列的模型积木(款、款、款、款、款各一个)为元
故答案为
【点睛】
此题考查了三元一次方程组,二元一次方程的应用,解题的关键是理解题意,找到等量关系,列出方程并根据参数的取值范围确定参数的解.
5、5
【解析】
【分析】
将方程组中的两个方程相加即可得出答案.
【详解】
解:,
由①②得:,即,
关于的方程组的解也是方程的解,
,
故答案为:5.
【点睛】
本题考查了二元一次方程组,熟练掌握二元一次方程组的解法是解题关键.
三、解答题
1、(1);(2)
【分析】
(1)利用把两个方程相加先消去求解 再求解,从而可得方程组的解;
(2)把方程①乘以3,再与方程②相加消去 求解 再求解 从而可得答案.
【详解】
解:(1)
①+②得:
解得:
把代入①得:
解得:
所以方程组的解是
(2)
①得:
②+③得:
解得:
把代入①得:
所以原方程组是解是
【点睛】
本题考查的是利用加减消元法解二元一次方程组,掌握“加减法解二元一次方程组”是解本题的关键.
2、(1);(2).
【分析】
(1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可.
【详解】
解:(1),
由①,得x=y+3③,
把③代入②,得3(y+3)-8y=14,
解得y=-1,
把y=-1代入③,得x=2,
故方程组的解为;
(2),
②-①×2,得11y=29,
解得y=,
把y=代入①,得2x-=-13,
解得x=−,
故方程组的解为.
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
3、(1);(2)
【分析】
(1)利用代入消元法解方程即可;
(2)利用代入消元法解方程即可.
【详解】
(1),
将①代入②,得3x-2(x-3)=5,
解得x=-1,
将x=-1代入①,得y=-1-3=-4,
∴方程组的解是;
(2),
由②得:y=2x-7③,
将③代入①得,3x+2(2x-7)=21,
解得x=5,
将x=5代入③得,y=3,
∴这个方程组的解是.
【点睛】
此题考查解二元一次方程组,掌握解二元一次方程组的解法:代入法或加减法,根据每个方程组的特点选择恰当的解法是解题的关键.
4、(1)1;(2)9;(3)1,4
【分析】
(1)有以上算法分别求出a,b,c,d的值,由步骤5得出Y=1;
(2)根据特定的算法依次求出a,b,c,d,再根据d为10的整数倍即可求解;
(3)根据校验码为9结合两个数字的和是5即可求解.
【详解】
解:(1)有题意可知,
a=7+7+3+5+6+7=35,
b=9+8+5+4+4+4=34,
c=3a+b=139,
d=140,
Y=d﹣c=140﹣139=1.
故答案为:1,
(2)设污点的数为m,
a=9+1+2+1+1+2=16,
b=6+0+0+8+m+0=14+m,
c=3a+b=62+m,
d=9+62+m=71+m,
∵d为10的整数倍,
∴d=80,
即71+m=80,
∴m的值为9;
则这个数字为9.
(3)可设这两个数字从左到右分别是p,q,依题意有,
a=9+9+2+q+3+5=28+q,
b=6+1+p+1+2+4=14+p,
c=3a+b=98+(3q+p),
∵d为10的整数倍,
∴d=120,
∴3q+p=13
又∵p+q=5
解得p=1,q=4
故答案为:1,4.
【点睛】
此题考查了有理数的加减运算,一元一次方程的应用以及二元一次方程的应用,解题的关键是理解并掌握题意,根据题意正确列出方程.
5、(1);(2)
【分析】
(1)用加减消元法解二元一次方程组即可;
(2)先化简方程组,再用加减消元解方程组即可.
【详解】
解:(1),
②-①得:,
解得,
把代入①得:,
解得:,
∴方程组的解为;
(2),
由②可得y=2-x,
把y=2-x代入①,可得x=-1,
把x=-1代入y=2-x,可得y=3,
∴方程组的解为.
【点睛】
本题考查解二元一次方程组,熟练掌握代入法与消元法解方程组,并能准确计算是解题的关键.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试达标测试,共20页。试卷主要包含了如图,9个大小等内容,欢迎下载使用。
这是一份数学北京课改版第五章 二元一次方程组综合与测试复习练习题,共22页。试卷主要包含了如果与是同类项,那么的值是等内容,欢迎下载使用。
这是一份初中数学第五章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了若是方程的解,则等于,有铅笔等内容,欢迎下载使用。