初中北京课改版第五章 二元一次方程组综合与测试课堂检测
展开
这是一份初中北京课改版第五章 二元一次方程组综合与测试课堂检测,共20页。试卷主要包含了二元一次方程组的解是,若是方程的解,则等于,已知,则等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、为迎接2022年北京冬奧会,某班开展了以迎冬奥为主题的体育活动,计划拿出200元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件25元,乙种奖品每件10元,则购买方案有( )
A.2种B.3种C.4种D.5种
2、如果关于x和y的二元一次方程组的解中的x与y的值相等,则a的值为( )
A.-2B.-1C.2D.1
3、若是方程组的解,则的值为( )
A.16B.-1C.-16D.1
4、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为( )
A.B.
C.D.
5、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )
A.95元,180元B.155元,200元C.100元,120元D.150元,125元
6、二元一次方程组的解是( )
A.B.C.D.
7、若是方程的解,则等于( )
A.B.C.D.
8、已知,则( )
A.B.C.D.
9、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )
A.转化思想B.分类讨论思想C.数形结合思想D.公理化思想
10、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )
A.B.
C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、《九章算术》记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两,问一牛一羊共直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问一头牛和一只羊共值金多少两?”根据题意可得,一头牛和一只羊共值金 ____两.
2、在《九章算术》的“方程”一章中,一次方程组是由算筹布置而成的,若图1所示的算筹图表示的方程组为,则图2所表示的方程组的解为__________.
3、若x2a﹣3+yb+2=3是二元一次方程,则a﹣b=__.
4、某玩具店在10月份开始售卖中国航天系列的模型积木,其中包括款(中国载人空间站)、款(长征五号运载火箭)、款(火星探测器)、款(天舟货运飞船)、款(航天员公仔),所有模型积木的售价均为整数.在10月份售卖过程中,款和款的售价相同且售价在100元与200元之间,款的售价比款售价低50元,款售价比款售价高40元,款、款、款、款、款的销量之比为,且10月份款与款的销售总额比款的销售额多1000元,款的销售额比款的销售额少20元.进入11月,随着双11购买节的临近,玩具店决定在双11这一天举行促销活动,相比10月份各款的售价,款和款的售价都降低30元,款的售价降低20元,款、款降低的价格都为款降低价格的.活动结束后统计发现:活动当天,款销量比10月份的款销量增加了50%,款销量为10月份自身销量的2倍,款销量增加了10月份款销量的一半,款销量与10月份款销量相同,而款销量相比10月份自身销量有所增加,且活动当天各款模型积木销售总额比10月份款、款、款销售总额的2倍多348元,则双11促销活动当天购买一套中国航天系列的模型积木(款、款、款、款、款各一个)需要__________元.
5、若是方程2x+y=10的解,求6a+3b﹣4的值是 ___.
三、解答题(5小题,每小题10分,共计50分)
1、用加减消元法解下列方程组:
(1) (2) (3) (4)
2、列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如表所示:
(1)该大型超市购进A、B品牌矿泉水各多少箱?
(2)全部销售完600箱矿泉水,该超市共获得多少利润?
3、已知关于x,y的方程组的解是正数,化简
4、解下列方程组:
(1)
(2)
5、若关于x,y的方程组与的解相同,求a,b的值;
---------参考答案-----------
一、单选题
1、B
【分析】
设购买甲种奖品为x件,乙种奖品为y件,由题意可得,进而求解即可.
【详解】
解:设购买甲种奖品为x件,乙种奖品为y件,由题意可得:
,
∴,
∵,且x、y都为正整数,
∴当时,则;
当时,则;
当时,则;
当时,则(不合题意舍去);
∴购买方案有3种;
故选B.
【点睛】
本题主要考查二元一次方程的应用,正确理解题意、掌握二元一次方程整数解求解的方法是解题的关键.
2、C
【分析】
先根据x=y,把原方程变成,然后求出x的值,代入求出a的值即可.
【详解】
解∵x=y,
∴原方程组可变形为,
解方程①得x=1,
将代入②得,
解得,
故选C.
【点睛】
本题主要考查了根据二元一次方程组的解集情况求参数,解题的关键在于能够根据题意把x=y代入到原方程中求出x的值.
3、C
【分析】
把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.
【详解】
解:把代入方程组得,
两式相加得;
两式相差得:,
∴,
故选C.
【点睛】
本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
4、B
【分析】
设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.
【详解】
解:设甲持钱x,乙持钱y,
根据题意,得:,
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
5、B
【分析】
设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.
【详解】
解:设每件商品标价x元,进价y元则根据题意得:
,
解得:,
答:该商品每件进价155元,标价每件200元.
故选:B.
【点睛】
本题考查了二元一次方程的应用,找出正确等量关系是解题关键.
6、C
【分析】
根据加减消元法,由①+②得出11x=33,求出x,再把x=3代入①求出y即可.
【详解】
解:,
由①+②,得11x=33,
解得:x=3,
把x=3代入①,得9+2y=13,
解得:y=2,
所以方程组的解是,
故选:C.
【点睛】
本题考查了解二元一次方程组,解题的关键是掌握加减消元法解方程组.
7、B
【分析】
把代入到方程中得到关于k的方程,解方程即可得到答案.
【详解】
解:∵是方程的解,
∴,
∴,
故选B.
【点睛】
本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.
8、B
【分析】
根据二元一次方程组的解法以及非负数的性质即可求出答案.
【详解】
解:由题意可知:
解得: ,
故选:B.
【点睛】
本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.
9、A
【分析】
通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.
【详解】
解:在解二元一次方程组时,
将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,
从而将二元一次方程降次转化为一元一次方程求解,
这种解法体现的数学思想是:转化思想,
故选:A.
【点睛】
本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.
10、A
【分析】
根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.
【详解】
解:设小长方形的长为x,宽为y,
由题意得: 或,
故选A.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.
二、填空题
1、##
【解析】
【分析】
根据“5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到两个等量关系,即可列出方程组.
【详解】
解:设1头牛值金x两,1只羊值金y两,
由题意可得,,
上述两式相加可得,x+y=.
故答案为:.
【点睛】
此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.
2、
【解析】
【分析】
类比图1所示的算筹的表示方法解答即可.
【详解】
解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为
解得:
故答案为:
【点睛】
本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.
3、3
【解析】
【分析】
先根据二元一次方程的定义求出a、b的值,然后代入a﹣b计算即可.
【详解】
解:∵x2a﹣3+yb+2=3是二元一次方程,
∴2a﹣3=1,b+2=1,
∴a=2,b=﹣1,
则a﹣b=2﹣(﹣1)=2+1=3.
故答案为:3.
【点睛】
本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.
4、
【解析】
【分析】
根据十月份的数据,求得十月份的销售量以及款、款的销售价,再根据十一月份的数据,以及销售价和销售量的范围,求得十月份款、款、款的售价,即可求解.
【详解】
解:设十月份款、款售价为元,则,且为整数,则款的售价为元,款、款的销售价分别为,元,
根据十月份销售量款、款、款、款、款的销量之比为
设销售量分别为,,,,件
则由题意可得:,解得
由题意可得:十一月份款、款、款、款、款的售价分别为:,,,,元
销售量款、款、款、款、款的销量分别为:、、,,件,
由题意可得:
化简得
∵,即
解得
∴
∵,都为正整数,
∴能被整除,则的个位数字为或
则的个位数字为或,则的个位数字为为或
∴,经检验当时,不为整数,舍去,
所以,此时
双11促销活动当天购买一套中国航天系列的模型积木(款、款、款、款、款各一个)为元
故答案为
【点睛】
此题考查了三元一次方程组,二元一次方程的应用,解题的关键是理解题意,找到等量关系,列出方程并根据参数的取值范围确定参数的解.
5、26
【解析】
【分析】
先代入求出2a+b=10,再变形,最后代入求出即可.
【详解】
解:∵是方程2x+y=10的解,
∴2a+b=10,
∴6a+3b−4
=3(2a+b)−4
=3×10−4
=26.
故答案为:26.
【点睛】
本题考查了二元一次方程的解和求代数式的值的应用,用了整体代入思想.
三、解答题
1、(1) (2) (3) (4)
【分析】
(1)利用加减消元法,将方程①+②,即可求解;
(2)利用加减消元法,将方程②-①×2,即可求解;
(3)利用加减消元法,将方程①-②,即可求解;
(4)方程组整理后,利用加减消元法求出解即可.
【详解】
解:(1)
①+②得:9x=45,即x=5,把x=5代入①得:y=2,
则方程组的解为;
(2)
②-①×2得:13y=65,即y=5,把y=5代入②得:x=
则方程组的解为;
(3)
①-②得:12y=-36,即y=-3,把y=-3代入①得:x=
则方程组的解为;
(4)
方程组整理得:
①-②得:4y=28,即y=7,
把y=7代入①得:x=5,
则方程组的解为.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,做题的关键是当未知数系数相等时将方程相减,未知数系数相反时将方程相加.
2、(1)A品牌矿泉水400箱,B品牌矿泉水200箱;(2)7800元
【分析】
(1)设该大型超市购进A品牌矿泉水x箱,B品牌矿泉水y箱,根据该超市购进A、B两种品牌的矿泉水共600箱且共花费15000元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)利用总利润=每箱的销售利润×销售数量(购进数量),即可求出结论.
【详解】
解:(1)设该大型超市购进A品牌矿泉水x箱,B品牌矿泉水y箱,
依题意得:,
解得:.
答:该大型超市购进A品牌矿泉水400箱,B品牌矿泉水200箱.
(2)(元).
答:全部销售完600箱矿泉水,该超市共获得7800元利润.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
3、5a+1
【分析】
先求出方程组的解,然后根据方程组的解是正数可知4a+5是正数,a-4的取值范围,再根据绝对值的意义化简即可.
【详解】
解:,
①+②,得
2x=8a+10,
∴x=4a+5,
把x=4a+5代入②,得
4a+5+y=3a+9,
∴y=-a+4,
∴,
∵方程组的解是正数,
∴,即4a+5是正数,a-4是负数
∴=.
【点睛】
本题考查了二元一次方程组的解法,以及化简绝对值,求出方程组的解集是解答本题的关键.
4、(1);(2).
【分析】
(1)方程整理后利用加减消元法求出解即可;
(2)方程利用加减消元法求出解即可.
【详解】
解:(1),
方程组整理得:
①-②×2得:x=-1,
把x=-1代入②得:-1+y=4,
解得:y=5,
则方程组的解为;
(2),
①×2-②得:7y=35,
解得:y=5,
把y=5代入①得:2x+25=25,
解得:x=0,
则方程组的解为.
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
5、
【分析】
由题意可先解方程组,求出x、y后代入含a、b的两个方程,进一步即可求出结果;
【详解】
解:解方程组,得,
代入,得,
解得
【点睛】
本题考查了同解方程组,正确理解题意、熟练掌握二元一次方程组的解法是关键.
类别/单价
成本价(元/箱)
销售价(元/箱)
A品牌
20
32
B品牌
35
50
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共20页。试卷主要包含了已知,则,二元一次方程的解可以是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习题,共20页。试卷主要包含了用代入消元法解关于,若是方程的解,则等于,若方程组的解为,则方程组的解为等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了在一次爱心捐助活动中,八年级,下列方程是二元一次方程的是等内容,欢迎下载使用。